
Compact-LWE: a Public Key Encryption Scheme

Dongxi Liu, Nan Li, Jongkil Kim, and Surya Nepal

1 Introduction

In this proposal, we describe Compact-LWE, a new public key encryption scheme.
Compact-LWE is also used to refer to the hardness problem on which the encryption
scheme is constructed. We introduce Compact-LWE by comparing it with LWE [8].

Let s and ai be n-dimensional vectors drawn uniformly from Zn
q , and let the error

terms ei ∈ Zq be sampled from a discrete Gaussian distribution. The LWE problem
involves a set of samples

(ai, 〈ai, s〉+ ei mod q),

where 〈ai, s〉 denotes the inner product of ai and s. The search version of LWE problem
is to recover s from such samples.

The Compact-LWE problem also involves a set of samples, but defined differently
as

(ai, 〈ai, s〉+ k ∗ (ri + p ∗ ei) mod q, 〈ai, s′〉+ k′ ∗ (r′i + p ∗ e′i) mod q),

where s, s′, k, k′ and p are secret values, and errors ei, e′i, ri, and r′i are uniformly
sampled at random. For ri and r′i, they satisfy ck ∗ ri + ck′ ∗ r′i = 0 mod p, where ck
and ck′ are another two secret values. In addition, Compact-LWE takes short vector ai,
consisting of entries that can be much less than an error value ei, e′i, ri, or r′i.

The security features of Compact-LWE are briefly discussed here, with more de-
tails given later. The well-known lattice-based attacks to LWE [5, 6, 4] are based on
efficiently solving the hard Closest Vector Problem (CVP) in lattice. Even if k and k′

are correctly guessed, Compact-LWE is resistant to such attacks, because the errors in
a sample (ri + p ∗ ei or r′i + p ∗ e′i) can be much bigger than the entries of ai and thus
CVP does not apply.

Another hard problem in lattices is the Short Integer Solution (SIS) problem. If SIS
can be efficiently solved, the solution may help the attacker guess k, k′, p, ck, and
ck′. With the correct guess of these secret values, the attack can remove ri and r′i and
generate a new sample that includes the error value ck ∗ ei + ck′ ∗ e′i (i.e., errors are
always two-dimensional in Compact-LWE). Since the error value ck ∗ ei + ck′ ∗ e′i is
still big, the lattice-based attacks cannot apply even if SIS problem is efficiently solved
for Compact-LWE.

Hence, even if the hard problems in lattice, such as CVP and SIS, can be efficiently
solved, the secret values or private key in Compact-LWE still cannot be efficiently re-
covered. This allows Compact-LWE to choose very small dimension parameters, such
as n = 8 in our experiment.



2 Specification of the Compact-LWE Public Key Encryption
Scheme

The specification describes the public parameters of the scheme and its three algorithms
for key generation, encryption, and decryption.

2.1 Public Parameters

The scheme is specified by nine public parameters: q, t, n,m,w,w′, b, b′, l, which are
all positive integers, with q being the largest one. Let pp denote the public parame-
ters. The meaning of the parameters will be introduced when they are used. The public
parameters should satisfy the following basic conditions, with other conditions to be
introduced later with the corresponding algorithms.

– m > n+ 2
– w > w′

– (w − w′) ∗ b′ > t
– l ≥ 3
– t is a power of two integer.

In the following algorithms, all random numbers are uniformly sampled.

2.2 Key Generation

Given the public parameters, the key generation algorithm generates a random key pair
(SK,PK), where SK is the private key and PK is the public key. Let gen(pp) =
(SK,PK) denote the key generation algorithm.

The key generation algorithm depends on four private parameters: sk max, p size,
e min, and e max. The conditions e max > e min and e min∗w > w′∗(e max+1)
apply to e min and e max.

2.2.1 Private Key A private key is a tuple (s, k , sk , ck , s′, k ′, sk ′, ck ′, p), generated
in the following steps.

– s and s′ each is a n-dimensional vector, randomly sampled from Zn
q .

– k and k ′ are uniformly sampled from Zq and must be coprime with q.
– p is randomly sampled from the set {(w + w′) ∗ b′, ..., (w + w′) ∗ b′ + p size},

satisfying
• coprime with q, and
• sk max ∗ b′ + p+ e max ∗ p < q/(w + w′).

– ck and ck′ are uniformly sampled from Zp and one of them must be coprime with
p. In this specification, we assume ck′ is coprime with p.

– sk and sk′ are uniformly sampled from Zsk max, with sk ∗ ck + sk′ ∗ ck′ coprime
with p.

2



2.2.2 Public Key After the private key SK is generated, the algorithm gen(pp) then
generates the corresponding public key PK. The public key PK consists of m random
Compact-LWE samples, as defined below.

Let ai ∈ Zn
b be a vector uniformly sampled for the ith public key sample, and

ui ∈ Zb′ , ei ∈ [e min, e max], and e′i ∈ [e min, e max] be three random integers.
Another two randomly sampled integers ri ∈ Zp, and r′i ∈ Zp satisfies

ck ∗ ri + ck′ ∗ r′i = 0 mod p.

Since ck′ is coprime with p, the above condition can always be satisfied. Let kq ∗k−1q =

1 mod q, and k′q ∗ k′−1q = 1 mod q. Then, the ith public key sample is the tuple
(ai, ui, pki, pk

′
i), where

– pki = 〈ai, s〉+ k−1q ∗ (sk ∗ ui + ri + ei ∗ p) mod q, and
– pk′i = 〈ai, s′〉+ k′

−1
q ∗ (sk′ ∗ ui + r′i + e′i ∗ p) mod q.

2.3 Encryption

The encryption algorithm consists of two parts: basic encryption and general encryp-
tion. Basic encryption is only able to encrypt messages in Zt, while general encryption
can encrypt messages of any length and encodes them before calling the basic encryp-
tion algorithm.

2.3.1 Basic Encryption A plaintext value v for basic encryption comes from Zt. It is
encrypted into a ciphertext c with the public key PK, denoted c = enc(PK, v). The
ciphertext c is a (n + 3)-dimensional vector. The basic encryption algorithm needs to
generate an m-dimensional vector l. Let l[i] indicate its ith element and its first element
is l[1]. The XOR operation is denoted by ⊕ and the opertation rol(u, d) circuar shifts
a value u by d bits to the left. The basic encryption algorithm works by the following
steps.

– Generate the m-dimensional random vector l, such that
• w ≤ Σm

i=1l[i] ≤ w+w′ for all l[i] > 0 (i.e., the sum of all positive entries of l
is a random value in between w and w + w′),

• −w′ ≤ Σm
i=1l[i] ≤ 0 for all l[i] < 0 (i.e., the sum of all negative entries of l is

a random value in between −w′ and 0), and
• Σm

i=1l[i] ∗ ui > 0.
– Generate the ciphertext

c = (Σm
i=1l[i]∗ai, f(v,Σm

i=1l[i] ∗ ui), Σm
i=1l[i] ∗ pki mod q,Σm

i=1l[i] ∗ pk′i mod q),

where
f(v,Σm

i=1l[i] ∗ ui) = (v ⊕ rol(u, log2(t)/2)) ∗ u′ mod t,

u = (Σm
i=1l[i] ∗ ui) mod t, and

u′ ≥ (Σm
i=1l[i] ∗ ui)/t is the smallest integer coprime with t.

3



2.3.2 General Encryption General encryption encodes and then encrypts messages.
OAEP or other padding schemes can be used. However, we use a way that is easier to
implement.

Suppose I is an array of 256 random bytes. Let I[i] denote the ith entry of I . Simi-
larly, given a messagem,m[i] denotes its ith byte. The algorithm encode(I,m) = m′

encodes m into m′. Suppose the length of m is len(m) bytes. Then, the padding has

pl = log2(t) ∗ d8 ∗ (len(m) + l)/ log2(t)e/8− len(m)

bytes. The following is the pseudocode of encode.

– Append 0xFF to m, followed by pl − 3 bytes each having the value pl.
– Generate two random bytes r and r′.
– x = I[r] and r ori = r
– for i=1 to len(m) + pl − 2 do
– m′[i] = x⊕m[i]
– x = x⊕ I[(m′[i] + r ori) mod 256]
– r = r ⊕ ((m′[i] ∗ r′) mod 256)
– x = I[r′] and r ori = r′

– for i = len(m) + pl − 2 to 1 do
– m′[i] = x⊕m′[i]
– x = I[(m′[i] + r ori) mod 256]
– r′ = r′ ⊕ ((m′[i] ∗ r) mod 256)
– m′[len(m) + pl − 1] = r
– m′[len(m) + pl] = r′

After encoding, the general encryption algorithm divides a long message into blocks,
each of which has log2(t) bytes, and encrypts each block with the basic encryption al-
gorithm.

2.4 Decryption
The decryption algorithm also consists of basic decryption and general decryption. Ba-
sic decryption only decrypts cipher blocks generated from basic encryption, while gen-
eral decryption can decrypt ciphertexts of any length.

2.4.1 Basic Decryption Let SK = (s, k , sk , ck , s′, k ′, sk ′, ck ′, p) be the private key.
Given the ciphertext c = (a, d, pk, pk′), the basic decryption algorithm dec(SK, c) =
v recovers the plaintext value v with the following steps.

– Calculate d1 = (pk − 〈a, s〉) ∗ k mod q, and d′1 = (pk′ − 〈a, s′〉) ∗ k′ mod q.
– Let d2 = ck ∗ d1 + ck′ ∗ d′1 mod p.
– Calculate d3 = sckInv ∗d2 mod p, where sckInv is determined by sckInv ∗ (sk ∗
ck + sk′ ∗ ck′) = 1 mod p.

– Obtain v = f−1(d, d3), where

f−1(d, d3) = (u′
−1
p ∗ d mod t)⊕ rol(u, log2(t)/2),

u = d3 mod t,

u′ ≥ d3/t is the smallest integer coprime with t, and

u′
−1
p ∗ u′ = 1 mod t.

4



2.4.2 General Decryption Given a byte array of ciphertext, general decryption di-
vides it into blocks, decrypts each block by using the basic decryption algorithm, and
after all blocks are decrypted, decodes the messages. If the padding does not match the
byte 0xFF followed by pl − 3 bytes each having the value pl, then general decryption
returns a failure.

General decryption uses the algorithm decode(I,m′) = m to decode m′ into the
plaintext m. The decoding algorithm is defined with the following pseudocode.

– Let l = len(m′), r′ = m′[l], r = m′[l − 1]
– for i = 1 to l − 2 do
– r′ = ((m′[i] ∗ r) mod 256)⊕ r′
– x = I[r′]
– for i = l − 2 to 1 do
– m[i] = x⊕m′[i]
– x = I[(m′[i] + r′) mod 256]
– for i = 1 to l − 2 do
– r = ((m[i] ∗ r′) mod 256)⊕ r
– x = I[r]
– for i=1 to l − 2 do
– y = m[i]
– m[i] = x⊕m[i]
– x = I[(y + r) mod 256]
– Check padding as described above.

Any changes to m′ leads to the change to x in each loop and the random numbers r
and r′. Then, the changes are propagated to every byte of m.

2.5 Correctness

We discuss the correctness of basic encryption and basic decryption algorithms. Our
basic decryption algorithm is deterministically correct, as analyzed below. At the first
step of decryption, we have

d1 = sk ∗Σm
i=1l[i] ∗ ui +Σm

i=1l[i] ∗ ri +Σm
i=1l[i] ∗ ei ∗ p mod q

and
d′1 = sk′ ∗Σm

i=1l[i] ∗ ui +Σm
i=1l[i] ∗ r′i +Σm

i=1l[i] ∗ e′i ∗ p mod q.

Due to the condition on l and sk max ∗ b′ + p+ e max ∗ p < q/(w + w′), we know

0 < sk ∗Σm
i=1l[i] ∗ ui +Σm

i=1l[i] ∗ ri +Σm
i=1l[i] ∗ ei ∗ p < q,

implying that

d1 = sk ∗Σm
i=1l[i] ∗ ui +Σm

i=1l[i] ∗ ri +Σm
i=1l[i] ∗ ei ∗ p.

Similarly, we have

d′1 = sk′ ∗Σm
i=1l[i] ∗ ui +Σm

i=1l[i] ∗ r′i +Σm
i=1l[i] ∗ e′i ∗ p.

5



Then, at the second step of decryption, since ck ∗ ri+ ck′ ∗ r′i = 0 mod p, we obtain

d2 = (ck ∗ sk + ck′ ∗ sk′) ∗Σm
i=1l[i] ∗ ui mod p.

Due to the condition (w + w′) ∗ b′ < p, we know l[i] ∗ ui < p and l[i] ∗ ui is then
recovered at the third step, leading to the same u and u′ as used in basic encryption.

3 Security and Attacks

3.1 Hardness and IND-CCA2 Security

As introduced in Section 1, compared with LWE, a Compact-LWE sample includes
extra secret values (s′, k, k′, p, ck, and ck′) and extra errors (ri, r′i, and e′i), and extra
public parameters. Informally, given a LWE sample, by choosing k = 1, p = 1, and
any values for other secrets and errors, the adversary can convert a LWE sample into
a Compact-LWE sample, in which the extra public parameter b takes the same value
as q. Hence, if the adversary can find s from Compact-LWE samples, then the same
algorithm can be used to find s from LWE samples. Since it is hard to solve the search
LWE problem [8], it is also hard to recover secret value s from Compact-LWE samples.
Similarly, s′ is also hard from Compact-LWE samples. Without knowing s and s′, the
adversary cannot determine the values of k∗(ri+p∗ei) mod q and k′∗(r′i+p∗e′i) mod q
in each Compact-LWE sample, making the recovery of secret values (k, k′, p, ck, and
ck′) hard. In the next section, with concrete attacks, we will show when the extra public
parameter b takes a value smaller enough than q, the search of the original secrets in
both LWE and Compact-LWE is even harder.

Our scheme can achieve IND-CCA2 security. Informally, when a ciphertext is changed
(or adaptively chosen) by the adversary, the basic decryption algorithm adds a random
error of at least u′−1p to the encoded message. The error is then propagated to every byte
of the decoded message by the decoding algorithm. When an padding, which is at least
l bytes, does not match, the general decryption algorithm just returns failure, indicated
by -1 in implementation.

3.2 Attacks to Public Keys

This type of attacks aims to recover private keys from the corresponding public keys.
These attacks have been developed to attack LWE, including algebraic attacks [2], com-
binatorial attacks [1, 3], and lattice-based attacks [5, 6, 4].

Since the number of samples in our public keys is limited, algebraic attacks and
combinatorial attacks are not effective [7]. We discuss more on lattice-based attacks.
We first introduce lattice-based attacks to LWE.

Suppose there are m LWE samples. Let A be a n ∗m matrix constructed by taking
each of the m vectors ai as a column of A, and let e be a m-dimensional error vector
obtained by collecting ei as its entries. Then, the lattice-based attacks to LWE try to
find s from the m samples by solving CVP in lattices [5, 6, 4]. That is, in the lattice
generated from the row vectors of A, the problem is to find a lattice point that is closest
to the target AT s+ e. In LWE, the vector e has a small Euclidean norm ‖e‖, and thus

6



the lattice point closest to AT s + e is AT s, which can then be used to recover s by
solving a system of noiseless linear equations.

In Compact-LWE, the errors k ∗ (ri + p ∗ ei) (or k′ ∗ (r′i + p ∗ e′i)) can be as big
as q, apparently making CVP not applicable to Compact-LWE. If k and k′ have been
correctly guessed, the errors become ri + p ∗ ei (or r′i + p ∗ e′i), which are much bigger
than elements in ai, making AT s+e and AT s not closest to each other. Thus, even if k
and k′ have been correctly guessed, lattice-based attacks [5, 6, 4] are still not applicable
to Compact-LWE, even not applicable to LWE with short ai. With the tool provided in
[4], Figure 1 shows that lattice-based attacks fail to find s from LWE samples when b
becomes small enough (i.e., short ai). In the experiment, for each b, 50 sets of LWE
samples are generated and attacked, with n = 9, m = 24, q = 248, and ei is uniformly
sampled from Z3200 or Z1600.

Fig. 1. Resistance to Lattice-based Attacks

For example, if the first element of s is increased by 1, the changed secret still can
satisfy each LWE sample by changing the original ei into ei − ai[1], where ai[1] is the
first element of ai. When ei has a bigger range than ai[1], ei − ai[1] can still be a valid
error. Similarly, for Compact-LWE, when k is correctly guessed, if the first element of s
is increased by k, ri can be changed into ri − ai[1] to counteract the change to s. Thus,
when ai is short enough and the dimension n is very small, the lattice-based tool can
quickly return a secret, which however is not the original secret s. For Compact-LWE
encryption scheme, when ri is changed, the condition ck ∗ ri + ck ∗ ri = 0 mod p is no
longer valid and the decryption will fail.

SIS is another hard lattice problem [7]. If SIS can be easily solved, the attacker can
reduce Compact-LWE samples to the samples like k−1q ∗ (rsis + p ∗ esis) mod q (and
k′
−1
q ∗ (r′sis + p ∗ e′sis) mod q), from which the attacker can determine k−1q by correctly

guessing p, rsis, and esis. Note that in k−1q ∗ (rsis + p ∗ esis) mod q, rsis can be bigger
than p and much bigger than esis. Hence, p and rsis cannot be uniquely guessed. For
example, p− 1 and rsis + esis are also a valid guess.

7



If both rsis and r′sis happen to be correctly guessed, a pair of valid ck and ck′ can
be determined, since ck ∗ rsis + ck′ ∗ r′sis = 0 mod p. Note that the attacker can choose
ck = 1 and determine the value ck′ according to ck ∗ rsis + ck′ ∗ r′sis = 0 mod p (or
the other way).

After k−1q , k′−1q , p, and a valid pair of ck and ck′ are correctly guessed, the at-
tacker can remove r and r′ in the public sample by rewriting a public key sample
(ai, ui, pki, pk

′
i) into the following one:

(ai ∗ kq ∗ ck,ai ∗ k′q ∗ ck′, ui, pk′′i ),
where

– pk′′i = pki ∗ kq ∗ ck + pk′i ∗ k′q ∗ ck′ mod q
= (sk ∗ ck + sk′ ∗ ck′) ∗ ui + 〈ai ∗ kq ∗ ck, s〉 + 〈ai ∗ k′q ∗ ck′, s′〉 + (ck ∗ ei +
ck′ ∗ e′i + yi) ∗ p mod q,

– yi ∈ Zp is determined by yi = (ck ∗ ri + ck′ ∗ r′i)/p.

The new sample above includes the error ck ∗ ei + ck′ ∗ e′i + yi, which is still big.
If the attacker insists on applying lattice-based attacks to the rewritten public key, the
original secrets s, s′ and ck ∗ sk + ck′sk′ cannot be recovered as illustrated in Figure
1. Since ck ∗ ei + ck′ ∗ e′i + yi can be much bigger than 2 ∗ e max, the wrong secrets
obtained in such attacks will generate too much error in the result of the first step of
basic decryption (i.e., d1 and d′1). Too much error violates the correctness condition
(sk max ∗ b′+ p+ e max ∗ p < q/(w+w′)), hence failing to generate correct results.

Let ck = 1. The attacker thus has to exhaustively search correct e′i for at least 2n+1
new samples and then deals with the smaller remaining error ei+yi by applying lattice-
based attacks to recover s, s′, ck ∗ sk + ck′ ∗ sk′ from a public key. Note that ei + yi
is still bigger than elements in ai or even ui; hence, a correct guess of e′i still cannot
guarantee the recovery of valid s, s′, ck ∗ sk + ck′ ∗ sk′.

3.3 Attacks to Ciphertexts

Without knowing the private key, an attacker may try to recover a message from the
ciphertext and the public key. Since a long message is divided into blocks to encrypt,
the attacker needs to correctly guess l for each message block. Due to padding, there
are at least d8 ∗ l/ log2(t)e blocks for a message and the decoding algorithm ensures
that even one bit change can be propagated to every byte of the decoded message and
returns -1 if padding is not correct. Hence, the guess to l must be correct for all blocks
at the same time.

For a single ciphertext block, since m > n + 2, there can be a large number of
solutions for l by choosing big enough m for the public key and big enough w and w′

for basic encryption. Note that the size of a public key increases with m, but not the
size of ciphertexts.

Each solution for l can lead to a decrypted message block. When the number of the
solutions of l is as big as t, this type of attacks does not make sense for the attacker.
For example, if t = 2 and the solutions of l allows both 0 and 1 to be decrypted from
a ciphertext block, then the attacker cannot determine which is the correct plaintext by
attacking ciphertexts.

8



4 Performance Analysis and Evaluation

The performance of key generation algorithm and basic encryption/decryption algo-
rithms is analyzed below. The analysis relies on the parameters q, t, n,m,w,w′, b, b′.

4.1 Performance of Key Generation

A private key is defined as (s, k , sk , ck , s′, k ′, sk ′, ck ′, p), which includes 2∗(n+3)+1
random numbers that need to be randomly sampled and checked for the corresponding
conditions. In particular, sk, sk′, and ck′ might need to be generated a few more times to
ensure ck′ is coprime with p and sk ∗ ck+ sk′ ∗ ck′ is also coprime with p. In addition,
our implementation chooses to compute the multiplicative inverses of k, k′, ck′, and
sk ∗ ck + sk′ ∗ ck′, and stores these multiplicative inverses as part of the private key.
Hence, they will not be computed during the generation of public keys and decryption,

A public key consists of m samples. For each sample, the inner product of two
n-dimensional vectors needs to be calculated twice, three random numbers (ri, ei, e′i)
need to be sampled, plus a small constant number of additions and multiplications.
Asymptotically, the time complexity of key generation algorithm isO(n) for generating
private keys and O(m ∗ n) for generating public keys.

Recall that encoding and decoding algorithms rely on the byte array I , which is
hard-coded in our implementation. To reduce the size of public keys, the vector ai ∈ Zn

b

is extracted from I deterministically. To avoiding storing ui, the first public sample uses
the first element of I as u1, and lets ui = pki−1 ⊕ pk′i−1 mod b′ for 1 < i ≤ m. Hence,
in addition to seven public parameters (i.e., q, t, n,m,w,w′), a public key consists of
m pairs of pki and pk′i, each of which has log2(q) bits.

4.2 Performance of Basic Encryption

The encryption algorithm first generates an m-dimensional vector l. The sum of its
positive entries is at most w + w′ and the sum of its negative entries is at least −w′.
Hence, at most w+2∗w′ random number needs to be sampled to generate l. Moreover,
if the sum of the negative entries is too big (reflected by the third condition on l), another
at most w′ operations are need to reduce some negative entries until the third condition
on l holds. Hence, the time complexity of generating l is O(w + 3 ∗ w′).

After l is generated, the algorithm multiplies each of m vectors in the public key
with the corresponding entry l, and then all m resulting vectors are added. The com-
plexity of this step in encryption is O(m ∗ (n + 3)). Hence, the complexity of basic
encryption is O(w + 3 ∗ w′) +O(m ∗ (n+ 3)).

A ciphertext from basic encryption is an (n+3)-dimensional vector. The size of the
first n elements is at most log2((w + w′) ∗ b) bits, the following one has log2(t) bits,
and the last two both have log2(q) bits. Hence, the total size of a ciphertext block from
basic encryption is

n ∗ log2((w + w′) ∗ b) + log2(t) + 2 ∗ log2(q)

bits. In our implementation, a ciphertext block is a little bit longer since each of the
first n elements is byte-aligned. The padding in general encryption adds at most d8 ∗
l/ log2(t)e message blocks to encrypt.

9



4.3 Performance of Basic Decryption

The decryption algorithm needs to calculate the inner product of two n-dimensional
vectors twice, plus a constant number of extra multiplications and additions. Hence, the
time complexity is O(2n).

5 Advantages and Limitations

Compact-LWE has the following advantages:

– Compact-LWE is constructed on simple mathematical objects (only integers and
modular arithmetic over integers), which thus is easy to be understood and thor-
oughly analyzed by the cryptographic community.

– Even if the hardness problems in lattices (such as CVP and SIS) can be solved ef-
ficiently, the security of Compact-LWE are not affected as illustrated and analyzed
in Section 3.2. Hence, the dimension parameter n in Compact-LWE can be very
small and Compact-LWE can generate short ciphertexts.

– The selection of parameters is straightforward. All secret values and errors are sam-
pled uniformly at random. For parameters satisfying the conditions specified in the
scheme, the scheme does not have any decryption failures, as proved in Section 2.5.

– The simplicity of Compact-LWE makes it easy to implement. In addition, it can
be used as a lightweight public encryption scheme. It has an implementation for
Contiki Operating System, with evaluation over Tmote Sky wireless sensor nodes.

– Key generation in Compact-LWE is efficient. When used in key-establishment pro-
tocols, Compact-LWE can support forward secrecy by generating fresh key pairs
for each new session.

Compared with RSA and ECC, a limitation of Compact-LWE is that the size of its
public keys is bigger. For example, in the experiment described below, the public key is
about 2K bytes.

6 Performance Evaluation

6.1 Platform Description

The performance is evaluated on 64-bit Ubuntu 17.04 running on Window 7 with
VMware Workstation 12 Player. The computer is Dell Latitude E7470, with Intel Core
i5 CPU and 8GB RAM.

6.2 Parameter Selection

Table 1 and Table 2 list the parameters to be used in the evaluation and to be used to
define the security strength category.

10



q t n m w w′ b b′ l

264 232 8 128 224 32 16 68719476736 8

Table 1. Public Parameters

sk max p size e min e max

229119 16777216 457 3200

Table 2. Private Parameters

6.3 Security Strength Category

As discussed in Section 3.2, even if k−1q , k′−1q , p, ck, and ck′ can be correctly guessed,
the attacker still has to exhaustively search correct ei (or e′i) for at least 2n+1 samples
to recover secrets s, s′, ck ∗ sk + ck′ ∗ sk′ from a public key. Recall that e min ≤
ei, e

′
i ≤ e max. Given the above parameter configuration, the search space is at least

log2(e max− e min) ∗ (2n+ 1) = log2(3200− 457) ∗ (2 ∗ 8 + 1) = 194

bits, which is comparable to the search space of AES192. Hence, any attacks that re-
cover a security key from a public key of Compact-LWE must require computational
resources comparable to those required for key search on AES192.

6.4 Sizes of Keys and Ciphertexts

For the above configuration, the private key and the public key are 232 bytes and 2064
bytes, respectively. We use 2 bytes to store each of the first 8 elements; hence, the basic
encryption generates ciphertexts of 36 bytes for a 4-byte message block. For messages
of different lengths, the sizes of corresponding ciphertexts are given in Table 3. As an
example, for a 32-byte message and 8-byte padding, it is divided into 10 blocks and the
general encryption returns a ciphertext of 360 bytes.

Message (bytes) 32 64 128 256 512 1024

Ciphertext (bytes) 360 648 1224 2376 4680 9288

Table 3. Ciphertext Size

6.5 Efficiency

The performance is based on the optimised implmentation of the scheme, which is
compiled with -O2 option of gcc.

The time of generating 10000 key pairs is about 1.55 seconds. The performance of
encryption and decryption depends on the length of messages, as shown in Table 4.

11



Message (bytes) 32 64 128 256 512 1024

Encryption (seconds) 1.29 2.15 4.36 7.56 14.81 28.78
Decryption (seconds) 0.18 0.27 0.43 0.88 1.78 3.50

Table 4. Performance of 10000 Encryptions and Decryptions

References

1. Albrecht, M.R., Cid, C., Faugère, J.C., Fitzpatrick, R., Perret, L.: On the complexity of the
bkw algorithm on lwe. Des. Codes Cryptography 74(2), 325–354 (Feb 2015)

2. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Proceedings
of the 38th International Colloquim Conference on Automata, Languages and Program-
ming - Volume Part I. pp. 403–415. ICALP’11, Springer-Verlag, Berlin, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2027127.2027170

3. Kirchner, P., Fouque, P.: An improved BKW algorithm for LWE with applications to cryptog-
raphy and lattices. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I. pp. 43–62
(2015)

4. Kirshanova, E., May, A., Wiemer, F.: Parallel implementation of BDD enumeration for LWE.
In: Applied Cryptography and Network Security - 14th International Conference, ACNS 2016,
Guildford, UK, June 19-22, 2016. Proceedings. pp. 580–591 (2016)

5. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption. In: Kiayias,
A. (ed.) Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA Con-
ference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings. Lecture Notes in
Computer Science, vol. 6558, pp. 319–339. Springer (2011)

6. Liu, M., Nguyen, P.Q.: Solving bdd by enumeration: An update. In: Proceedings of the 13th
International Conference on Topics in Cryptology. pp. 293–309. CT-RSA’13 (2013)

7. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part I. pp. 21–39 (2013)

8. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In:
Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, May 22-24, 2005. pp. 84–93. ACM (2005)

12


