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The Generic Complexity of MinRank∗1

Ray Perlner† and Daniel Smith-Tone‡2
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Abstract. The MinRank problem is the basis for much of our understanding of the complexity of solving large4
systems of structured multivariate quadratic equations. In this article we derive an exact upper5
bound on the complexity of quite overdetermined instances of MinRank that doesn’t depend on any6
heuristic. Such systems with a low MinRank are effectively the only ones possible in multivariate7
cryptography, thus the complexity bound has practical value.8

Key words. MinRank, Hilbert Series, Hilbert Regularity, Rank Defect9

AMS subject classifications. 68Q25, 96A6010

1. Introduction. The MinRank problem has emerged as a central technique in the resolu-11

tion of large systems of structured multivariate equations. Examples of practical instances of12

systems of equations solvable by way of MinRank include many cryptanalyses of multivariate13

public key cryptosystems, see, for example, [6, 1, 8, 7, 9, 2, 5]. There is thus tremendous14

practical value to the effective computation of MinRank.15

Previous work investigating the complexity of the MinRank problem includes [3]. The16

article addresses the general problem, but the most practically important case— practical in17

the sense that the result is relevant to cryptanalytic problems— is solved only under a conjec-18

ture related to the Fröberg conjecture of [4]. Furthermore, the calculation of the complexity19

is cumbersome, consuming much effort and space in articles such as [1, 2].20

We define a category of overdefined MinRank instances, called superdefined. This category21

includes the vast majority of MinRank instances relevant to cryptanalyses of multivariate22

public key cryptosystems, and in particular, all of the examples cited above. We provide an23

explicit closed form upper bound on the complexity of superdefined instances of MinRank free24

from any qualifying assumptions or conjectures. In particular, we compute the exact Hilbert25

regularity of such MinRank systems. Thus, the complexity of such MinRank calculations can26

be derived in constant time.27

2. The MinRank Problem.28

Definition 1. The MinRank problem with parameters (n, r, k) over a field K is the problem29

of constructing with input M1, . . . ,Mk ∈Mn×n(K) a nonzero K-linear combination satisfying:30

Rank

(
k∑

i=1

aiMi

)
≤ r.31

The complexity of the MinRank problem in general is clearly bounded by the complexity in32

the case that the minimum rank of any nonzero K-linear combination is exactly r; thus, we33
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2 R. PERLNER AND D. SMITH-TONE

generally assume that the nonzero matrix of minimum rank in the span of the Mi has rank34

exactly r.35

One may consider the matrix36

M =
k∑

i=1

tiMi,37

whose entries are in K[T ] = K[t1, . . . , tk]. The Kipnis-Shamir modeling of this MinRank38

problem, see [6] constructs a basis for the right kernel of M of the form39

K =



1 0 · · · 0
0 1 · · · 0
...

...
. . . 1

v1,1 v1,2 · · · v1,n−r
...

...
. . .

...
vr,1 vr,2 · · · vr,n−r


40

using r(n − r) new variables vi,j . Then the relation MK = 0n×n−r produces n(n − r) equa-41

tions in k + r(n − r) variables in the polynomial ring K[T, V ] = K[t1, . . . , tk, v1,1, . . . , vr,n−r].42

Under the condition that for no fixed nonzero (t1, . . . , tk) is the rank of M less than r, the43

representation of K in column echelon form is unique, if existant; thus, the solution space is44

zero dimensional for all nonzero (t1, . . . , tk). We may therefore link the under and overde-45

termination of the MinRank problem to that of the corresponding Kipnis-Shamir modeling.46

Consequently, we define a MinRank problem to be underdetermined if k > (n − r)2, well-47

determined if k = (n− r)2 and overdetermined if k < (n− r)2.48

3. Minors Modeling in the General Case. One approach to the solution of the MinRank49

problem is known as minors modeling. Let I be the ideal in K[T ] generated by the (r + 1)×50

(r + 1) minors of M. Any element of V (I)∩Kk is clearly a solution to the MinRank problem51

over K.52

The number of (r + 1) × (r + 1) minors in M is
(

n
r+1

)2
; however, since every minor is53

homogeneous of degree r + 1 and there are only
(
k+r
r+1

)
degree r + 1 monomials, there can be54

at most55

q = min

((
k + r

r + 1

)
,

(
n

r + 1

)2
)

56

linearly independent generators of I. For MinRank instances with (n− r)2 < q, these gener-57

ators are algebraically dependent.58

In the following, we focus on the overdetermined case k < (n − r)2. In [3, Corollary 4],59

the Hilbert regularity of I is shown to be bounded by r(n − r) + 1 via a derivation of the60

Hilbert Series of K[T ]/I obtained with the aid of a variant of the Fröberg Conjecture. In61

many applications it has been shown that the regularity is r + 1 via the same cumbersome62

analysis, see [1, 2], for example.63

Among these overdetermined instances of MinRank is a special class, in which q =
(
k+r
r+1

)
.64

We refer to such instances as superdetermined. (If we consider the symmetric MinRank prob-65

lem, in which the matrices are all symmetric, then we say that the instance is superdetermined66
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if
(
k+r
r+1

)
≤
(

n
r+1

)2
/2). In particular, the instances of MinRank arising in cryptography, which67

we may always consider to be symmetric instances, are all superdetermined. This is due to68

the fact that the hard instances of multivariate quadratic systems of equations have a number69

of equations proportional to the number of variables whereas a system is superdetermined70

merely if the number of equations k is bounded by a quadratic function of the number of71

variables n, as proven in the following proposition.72

Proposition 1. A MinRank problem with parameters (n, r, k) over the field K is superde-73

termined if k ≤ (n−r)2
r+1 − r.74

Proof. Let k ≤ (n−r)2
r+1 − r. First, we note that75

2(r + 1)!2
(
k + r

r + 1

)
= 2(r + 1)!(k + r)(k + r − 1) · · · k ≤ 2(r + 1)!(k + r)r+1.76

Next, since 2(r + 1)! ≤ (r + 1)r+1 when r ≥ 1, we have that77

2(r + 1)!2
(
k + r

r + 1

)
≤ [(r + 1)(k + r)]r+1 .78

Since k ≤ (n−r)2
r+1 − r, then79

(r + 1)(k + r) ≤ (n− r)2,80

and so81

[(r + 1)(k + r)]r+1 ≤ (n− r)2(r+1)
82

Since (n− r)2(r+1) < n2(n− 1)2 · · · (n− r)2 = (r + 1)!2
(

n
r+1

)2
, we obtain83

2

(
k + r

r + 1

)
<

(
n

r + 1

)2

.
84

A generic superdetermined MinRank instance has a straightforward structure. We derive85

the exact Hilbert regularity for generic superdetermined systems.86

Theorem 1. Let (M1, . . . ,Mk) be a generic superdetermined instance of MinRank with87

parameters (n, r, k) over the field K. Let M =
∑k

i=1 tiMi ∈ Mn×n(K[T ]). Let I be the ideal88

generated by the r + 1× r + 1 minors of M. Then the Hilbert Series of K[T ]/I is89

HS(t) =
r∑

d=0

(
k + d− 1

d

)
td.90

Consequently, the Hilbert regularity of I is r + 1.91

Proof. Consider A = K[T ] as a graded algebra,92

A =
⊕
d≥0
Ad,93
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graded by total degree. Since there are
(
k+r
r+1

)
monomials of total degree r + 1 and the linear94

span of the minors of a generic superdetermined MinRank instance is
(
k+r
r+1

)
dimensional, there95

is a set of
(
k+r
r+1

)
minors of M that forms a basis of Ar+1. Thus the homogeneous ideal I can96

be written97

I ≈ 0⊕ · · · ⊕ 0⊕Ar+1 ⊕Ar+2 ⊕ · · · .98

Thus, the quotient K[T ]/I as a graded algebra satisfies99

K[T ]/I ≈
r⊕

d=0

Ad.100

Since dimK(Ad) =
(
k+d−1

d

)
for 0 ≤ d ≤ r— with the convention that

(
0
0

)
= 1— the Hilbert101

Series of K[T ]/I is102

HS(t) =
r∑

d=0

(
k + d− 1

d

)
td.103

Since the Hilbert Series is a polynomial of degree r, the Hilbert regularity is r + 1.104

4. Relevance of the Superdetermined Case to Multivariate Cryptography. The Min-105

Rank problem with parameters (n, r, k) typically occurs in cryptosystems where the public106

key is a system of k quadratic equations in n variables. While solving the MinRank problem107

typically leads to a key recovery, these cryptosystems can also be attacked by directly solv-108

ing the system of k equations for the n variables, resulting in either a signature forgery or a109

plaintext recovery.110

One strategy for solving this system of quadratic equations is to convert it into a system of111

degree-d equations and then linearly solve for all degree-d monomials in terms of lower degree112

polynomials. Multiplying each of the k quadratic equations by each of the
(
n+d−3
d−2

)
linearly113

independent degree-(d− 2) monomials results in k
(
n+d−3
d−2

)
equations. This method of solving114

succeeds with high probability when this number of equations exceeds the number of linearly115

independent degree-d monomials,
(
n+d−1

d

)
, due to the fact that nontrivial syzygies reduce the116

number of monomials required at degree d in proportion to the number of equations at degree117

d which are linearly dependent due to these syzygies. This inequality is satisfied when118

k ≥ (n + d− 1)(n + d− 2)

d(d− 1)
.119

In order for the complexity of MinRank to be cryptographically interesting we require120

that the MinRank attack be no more expensive than the direct attack. This condition implies121

the inequality122 (
n + d− 1

d

)
≥
(
k + r

r + 1

)
.123

Since a system of equations where k < n may be solved with high probability, by first124

guessing the value of n − k variables and then directly solving, we may assume WLOG that125

k ≥ n. Thus, minrank is only cryptographically interesting when d ≥ r + 1. In order for this126

to be true, we require:127

k <
(n + r − 1)(n + r − 2)

r(r − 1)
.128
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In combination with Proposition 1, this relation provides a sufficient condition on n and r for129

all cryptographically interesting instances of the MinRank problem with n variables and rank130

r to be superdetermined:131

(n + r − 1)(n + r − 2)

r(r − 1)
≤ (n− r)2

r + 1
− r.132

Asymptotically, this condition is met for 1 +
√

2 < r < n
2 . There are no cryptographically133

interesting instances where r ≥ n
2 since d < 5

2+
√
n < n

2+1 for all but the very smallest values of134

n. The above considerations rule out cryptographically interesting, but not superdetermined,135

instances of MinRank with r > 2 and n > 25. For reference, multivariate systems used in136

cryptography typically have n ≥ 40. A cryptosystem which could be attacked as a MinRank137

instance with r = 2 would have an attack complexity which is polynomial in the key size with138

degree less than or equal to 3ω
2 , where ω is the linear algebra constant. For any reasonable139

security level, such a cryptosystem would be extremely inefficient. Thus, cryptographically140

significant instances of the MinRank problem are all superdetermined.141

5. Conclusion. The seminal article [3] directly addresses the complexity of the MinRank142

problem and provides a general but computationally tedious solution. Since the above work143

is most often cited in reference to applications in cryptography, it is reasonable to consider144

whether there is a better formula for cryptographically interesting instances.145

We provide such a formula, requiring zero calculation. For multivariate cryptosystems146

for which the MinRank attack is the most efficient, the Hilbert regularity of the MinRank147

system is r + 1 where the target rank is r. Thus the complexity of such MinRank instances is148

O(
(
k+r+1
r+1

)ω
) = O(k(r+1)ω), where ω is the linear algebra constant.149
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[4] R. Fröberg, An inequality for Hilbert series of graded algebras, Math. Scand., 56 (1985), pp. 117–144.160
[5] L. Goubin and N. Courtois, Cryptanalysis of the ttm cryptosystem, in ASIACRYPT, T. Okamoto, ed.,161

vol. 1976 of Lecture Notes in Computer Science, Springer, 2000, pp. 44–57.162
[6] A. Kipnis and A. Shamir, Cryptanalysis of the HFE public key cryptosystem by relinearization, Advances163

in Cryptology - CRYPTO 1999, Springer, 1666 (1999), p. 788.164
[7] D. Moody, R. Perlner, and D. C. Smith-Tone, Improved attacks for characteristic-2 parameters of165

the cubic abc simple matrix encryption scheme, PQCRYPTO 2017, LNCS, 10346 (2017).166
[8] D. Moody, R. A. Perlner, and D. Smith-Tone, An asymptotically optimal structural attack on167

the ABC multivariate encryption scheme, in Post-Quantum Cryptography - 6th International Work-168
shop, PQCrypto 2014, Waterloo, ON, Canada, October 1-3, 2014. Proceedings, M. Mosca, ed.,169
vol. 8772 of Lecture Notes in Computer Science, Springer, 2014, pp. 180–196, https://doi.org/10.170
1007/978-3-319-11659-4 11, http://dx.doi.org/10.1007/978-3-319-11659-4 11.171

This manuscript is for review purposes only.



6 R. PERLNER AND D. SMITH-TONE

[9] J. Vates and D. C. Smith-Tone, Key recovery attack for all parameters of hfe-, PQCRYPTO 2017,172
LNCS, 10346 (2017).173

This manuscript is for review purposes only.




