From: Moody, Dustin (Fed)

To: Chen, Lily (Fed
Subject: PQC isogeny schemes slides
Date: Monday, February 13, 2017 10:01:17 AM
Attachments: PQC Isogeny Sigs.pptx
Lily,
Here you go!

Dustin

mailto:dustin.moody@nist.gov
mailto:lily.chen@nist.gov

Supersingular Isogeny Cryptography
(signatures and Diffie-Hellman)

References

Costello, Longa, Naehrig. "Efficient Algorithms for Supersingular Isogeny Diffie-Hellman." Advances in Cryptology – CRYPTO 2016 Proceedings, Springer Berlin Heidelberg, 2016.

https://eprint.iacr.org/2016/413.pdf

Galbraith, Petit, Shani, Ti. "On the Security of Supersingular Isogeny Cryptosystems." Advances in Cryptology–ASIACRYPT 2016 Proceedings, Springer Berlin Heidelberg, 2016.

http://eprint.iacr.org/2016/859.pdf

Galbraith, Petit, and Silva. "Signature Schemes Based On Supersingular Isogeny Problems.“, 2016

http://eprint.iacr.org/2016/1154.pdf

History of isogeny-based crypto

2003 Teske - key escrow system

2006 Rostovtsev/Stolbunov – Key exchange, encryption

2012 Stolbunov’s dissertation

2007 Charles, Goren, Lauter - hash function

2010 Childs, Jao, Soukharev - quantum attack on ordinary curves

2011 Jao, De Feo – SIDH

2011 Jao, De Feo, Plut – encryption, extended SIDH + implementation

2012 Xi, Tian, Wang – designated verifier signature scheme

2014 Azarderakhsh, Fishbein, Jao – implementation of SIDH

2014 Jao, Soukharev – isogeny based undeniable signatures

2016 Costello, Longa, Naehrig – state-of-the-art implementation of SIDH

2016 Galbraith et. al. – isogeny-based signature schemes

Background

Elliptic curves:

J-invariant

As a group, , with

Over a finite field, with

If , then E is supersingular, otherwise E is ordinary

If End(E) is an order in a quaternion algebra, then E is supersingular

If End(E) is an order in an imaginary quadratic field, then E is ordinary

Curves in these papers have , so E is supersingular

Isogenies

Isogeny – (nonconstant) rational homomorphism from

Examples

Tate’s Theorem: E and E’ are isogenous over iff

Isogenous curves form equivalence relation (quotient out by isomorphism classes)

Curves in same isogeny class are all supersingular, or all ordinary

Isogeny Degrees

An -isogeny is a (separable) isogeny whose kernel has cardinality

For every subgroup F of order , E has an -isogeny with kernel F

Given the kernel, can write the isogeny using Velu’s formula

Each -isogeny has a dual -isogeny

The composition the multiplication by map

Every isogeny (with degree >1) can be factored into a composition of prime degree isogenies over

There is a polynomial such that E and E’ are -isogenous iff

6

Velu’s Formula

Let E be an elliptic curve with finite subgroup F.

Then there is an isogeny from E, with kernel F.

For F, let

Recall, if |F| = l , then is an l-isogeny.

Velu’s Formula - Example

Let E be the curve

The points all have order 5.

Then

The isogeny is a 5-isogeny to the curve

Supersingularity and isogenies

Supersingular curves are all defined over

For every prime , there exist isogenies of degree from supersingular E

For , there are isogenies of degree

-torsion of E, denoted is the set of all points of order (over)

For supersingular E in these papers,

 assuming

Endomorphism rings

An isogeny is an endomorphism.

Endomorphisms form a ring

If E is ordinary, then End(E) is an order in an imaginary quadratic field

i.e., there exists an isogeny with

If E is supersingular, then End(E) is an order in a quaternion algebra

Quaternion Algebras

Given a,b we set

Elements are of the form

Hamiltonian quaternions are

For these papers,

Under correspondence,

working over the curve with

Pi(pi(P))=(x^p^2,y^p^2). Elements have order p^2-1, so =(x,y).

Group is Z(p+1) x Z(p+1). -pP=P  pi^2=-p.

11

Security of isogeny-based crypto

General Problem: Given two isogenous elliptic curves, construct an isogeny between them (over finite fields)

Ordinary curves

Galbraith/Stolbunov – classical

Childs/Jao/Soukharev – quantum subexponential (needs GRH)

Supersingular curves

Delfs/Galbraith – classical

Biasses/Jao/Sankar – quantum

SIDH is not completely general – low/smooth degree

Claw problem – classical , quantum

Claw Problem: For given two functions, f and g, the goal of the problem is to find x and y such that f(x)=g(y).

12

Isogeny Problems

1) Given prime and SS curve chosen randomly. Find curve and two isogenies with degrees .

2) Given prime , and SS curves over with chosen uniformly at random. Find isogeny of degree .

3) SIDH: Let prime . is SS curve with bases for . Let be isogeny with kernel , with chosen randomly. Given and find generator of , i.e. find .

4) Decisional version of 3….

5) prime, SS curve chosen randomly. Compute End(E).

6) prime, SS curves over with chosen uniformly at random. Find isogeny

Was basis for hash function

Slight variation of 2) Basis for SIDH schemes

3) And 4) are actual basis for SIDH

3 and 4) are weaker than 1) and 2) because extra info is given, special prime form, and small degree isogenies exist.

5,6 more general. If can solve 2 or 6, can solve 5. Set E0=E1 and find isogenies = endomorphisms. Easy to find independent ones, which form a low index subring.

Heuristically the converse is true (use isogeny – ideal correspondence of Deuring)

5 is basis for Galbraith’s signature scheme

13

Parameters for SIDH
(Costello, Longa, Naehrig)

SIDH uses isogenies with exponentially large (but smooth) degree

Compute them using composition of low-degree isogenies

Fix two small primes , then choose prime

Construct supersingular E with

This paper proposes , with

Use , with

bits 768/6=128 bits quantum security, 768/4=192 bits classical security

SIDH key-exchange

Let be generators of

 (and analogously for

Alice’s private key:

two integers

Isogeny with kernel >

Alice’s public key: , and

(Bob does the analogous thing)

Alice computes with kernel …. and Bob does similarly

and the shared secret is

SIDH key-exchange

Let be generators of

 and analogously for

Alice’s private key:

two integers

Isogeny with kernel >

Alice’s public key: , and

(Bob does the analogous thing)

Alice computes with kernel

					

…. and Bob does similarly

and the shared secret is

KeyGen details (1)

Recall, need two independent points of order

Use base field and trace-zero torsion subgroups

Base field: , generated by <P>

Let , where

Trace-zero: Use < >, which has order , and is independent of P

Tr

Only needs two -elements to represent this, instead of four

for smallest z (which is 11),

KeyGen details (2)

Alice needs to choose so that has order

She randomly chooses and sets

Easy proof shows it has full order

Only reaches 1/3 of possible

Bob does the same, but with B’s instead of A’s and 3 instead of 2

They then still need to compute their isogenies…

Computing the isogenies

Let R be a point of order . How to compute isogeny with kernel <R>?

Example: ,

 	 has order 16

Velu’s formula directly needs R,2R,….,15R, then work

Better: , each is of degree 2, work

2-isogeny: on

Iterative way described is going to the right first, then going left.

19

Computing the isogenies

Let R be a point of order . How to compute isogeny with kernel <R>?

Example: ,

 	 has order 16

Velu’s formula directly needs R,2R,….,15R, then work

Better: , each is of degree 2, work

2-isogeny: on

20

Example: 16-isogeny

For , need (which has order 2)

Example: 16-isogeny

For , need (which has order 2)

For , need (which has order 2)

Example: 16-isogeny

For , need (which has order 2)

For , need (which has order 2)

For , need (which has order 2)

Example: 16-isogeny

For , need (which has order 2)

For , need (which has order 2)

For , need (which has order 2)

For , need (which has order 2)

Example: 16-isogeny

For , need (which has order 2)

For , need (which has order 2)

For , need (which has order 2)

For , need (which has order 2)

 is degree 16

 with kernel

Example: 16-isogeny – isogeny variant

For , need (which has order 2)

Example: 16-isogeny – isogeny variant

For , need (which has order 2)

For , need (which has order 2)

Example: 16-isogeny – isogeny variant

For , need (which has order 2)

For , need (which has order 2)

Example: 16-isogeny – isogeny variant

For , need (which has order 2)

For , need (which has order 2)

Example: 16-isogeny – isogeny variant

For , need (which has order 2)

For , need (which has order 2)

For , need (which has order 2)

Example: 16-isogeny – isogeny variant

For , need (which has order 2)

For , need (which has order 2)

For , need (which has order 2)

For , need (which has order 2)

 is degree 16

 with kernel

Computing the isogenies

Let R be a point of order . How to compute isogeny with kernel <R>?

Set

Then and

Need to know the bottom row of the graph

Turns out a hybrid approach is best

Iterative way described is going to the right first, then going left.

Don’t compute two ways to a point

Left/right are O(n^2), whereas middle is O(n log n)

32

Optimal Strategy

Technical improvements

Projective coordinates for points and curve coefficients

Avoid inversions – only 3 total needed

Montgomery curve

			

Use the Kummer variety

Work with ,

Efficient algorithms for xADD: xDBL, xDBLADD, LADDER, xTPL, etc…. that only depend on x’s and coefficient a

Efficient projective 3-isogeny, 4-isogeny formulas

Efficient field arithmetic, modular reductions, etc…

Performance

3.4 GHz Intel Core i7-2600 Sandy Bridge and 3.4GHz Intel Core i7-4770 Haswell processors

Measured in millions of

 clock cycles

Prior work wasn’t

 constant time

For comparison, prior work has their key exchange on 2.4 GHz Intel Core i5 taking .22 seconds, so now maybe 0.07 seconds?

Stolbunov’s – 229 s. Original SIDH was .4 seconds.

35

Comparison

Using Ebacs – roughly

		DH Algorithm		KeyGen (cycles)		SharedSecret (cycles)

		SIDH		100,000,000		96,000,000

		Curve 25519		172,000		163,000

		Ed448 (Goldilocks)		176,000		470,000

		NIST P-256		246,000		600,000

Comparison

Table is from Tancrede Lepoint, SRI International

BigMont – SIDH+ECDH hybrid

Could partner SIDH with any DH scheme, but obvious advantages from sharing the SIDH implementation

Use same field with

Choose ordinary, rigid, twist-secure curve , with

Both E’ and it’s twist have order 4 times a 749 bit prime

About a 15% penalty in time/memory

38

Security of SIDH

De Feo/Jao/Plut proved SIDH is session-key secure in the authenticated-links adversarial model of Canetti and Krawczyk

Assumes perfectly authenticated links, which basically forces the adversaries to be passive eavesdroppers

This can be okay for ephemeral use, but not for real-world use (where static private keys are reused)

SSDDH: Differentiate between , where

Where the are actual parameters or chosen randomly

Public key validation

If SIDH private keys are reused, then public key validation is necessary

See Failure is not an option: Standardization issues for Post-Quantum key agreement, which described “indirect validation”

Public key validation for ECC easy – check a point is on correct curve

For SIDH, to validate:

need to check points P and Q have order on the same curve E’,

Check E’ is isogenous to public curve E,

Check that

40

Public key validation -- Improved

Check

Compute Weil pairing – check it’s order

Check P, Q have the right order

Checking point’s order only involves doubling or tripling

Check the curves E, E’ are isogenous

Tate’s Theorem: check E, E’ have the same # of points

Avoid need to select random point (and hence square root) by using fact that a point with given x-coordinate is on the curve or its twist,

Then check that point’s order (either or

Cost of validation: % of (KeyGen + SharedSecret) runtime

Original version was around % of runtime

P+1 is the correct isogeny class

41

Summary of SIDH

State-of-the-art implementation of SIDH

~ 3 x faster than previous work, but is it fast enough?

Constant time implementation

Parameters for 128 bits of quantum security/192 bits classical security

Public Key size: 4512 bits. Private Key size: 384 bits

ECDH+SIDH hybrid

Adding ECDH only adds about 15% in time/memory

Public-key validation

Active attack on static SIDH
(Galbraith, Petit, Shani, Ti)

If using static keys, attacker could do small subgroup/invalid curve type active attack on SIDH – hence need public key validation

Alice’s private key is . Bob sends and Alice computes isogeny with kernel

Alice should check what Bob sends, how SIDH paper described

Can do partial validation (NSA talk at NIST PQC workshop). Perform key exchange and then each party encrypts randomness used and sends to the other party. But this reveals Bob’s key to Alice

Key Fact: There is an equivalent key of form or

They generate the same subgroup

Check E is SS, P,Q on E and have right order, and are independent.

This isn’t symmetric key exchange. Bob does several computations, computes session key, then sends to Alice.

If mA is odd, since working in group of order 2^n, it has an (odd) inverse theta. Then theta(mA,nA) is an equivalent generator, but it equals (theta mA,theta nA)=(1,alpha).

43

The attack – Step 1

Oracle: Bob sends and Alice returns , where isogeny has kernel

Differentiate between or

Can assume is even

Attacker generates ephemeral values and follows protocol to get resulting key

Attacker sends to Alice and checks if

If so, the isomorphism implies , but this is true iff is even

Is even or odd?

Similarly test to see if is even

Note: These queries pass SIDH validation checks

Can be done with weaker oracle:

Oracle 2: Bob sends to Alice. Alice returns 1 if)

For converse of iff: if subgroups are equal, then lambda * LeftPoint = RightPoint, for lambda in Z_2^n*. As R,S independent look at coeff of S to see lambda nA=nA, hence lambda=1. Then look at coeff of R. mA+nA2^n-1=mA, so nA2^n-1 = 0 mod 2^n as R has order 2^n, so nA even.

44

Continuing the attack

Assumption: the key is , and we know one bit of

How to learn one more bit:

Attacker queries

If same then , otherwise

They continue in an iterative fashion to learn all but the last 2 bits, in a way that passes validation.

Wouldn’t pass “indirect validation” technique

(They can generalize the attack for when)

45

Computing endomorphism rings

Recall that if we can compute isogenies between and , we can compute End.

Also, heuristically the converse is true: If can compute endomorphism rings, we can find isogenies between two curves.

But what about the degree? SIDH isogenies have small degree)

Galbraith shows how if can compute endomorphism rings of SIDH curves, then can compute the SIDH isogenies

Key is knowing what the degree needs to be (which is small)

Thus, for SIDH, necessary to assume computing End(E) is hard

Bit security of

Does knowing one (or a few) bits of help an attacker?

Similar to results “hardcore bits” for DH in , and for DSA and ECDSA

We have , where

Modular polynomials There is a degree r isogeny if and only if .

 grows crazy fast – only need

Substituting in known values of j, reduces to recovering roots

Computing or is as hard as computing j

If know partial components, can use lattice methods to possibly recover j

Modular Polynomials

+ 8 more pages + …

+ 392423345094527654908696 …. (100 digits omitted)….000

 takes 100MB to store coefficients.

Phi 11 is 2.6K

Phi 73 is 1M

Phi 313 is 100M

48

Supersingular Signatures
Galbraith, Petit, Silva

Previous signatures schemes based on isogenies:

(interactive) undeniable signature scheme

Designated verifier signature (for only one verifier)

This work:

Signature scheme based on SIDH

Best classical attack is), quantum attack is)

New signature scheme based on hardness of computing End(E)

Best classical attack is), quantum attack is)

Random walks in isogeny graphs

Let be prime. The number of supersingular j-invariants in char. p is , where depending on p mod 12.

Create -isogeny graph, where vertices are j-invariants, and edges correspond to degree isogenies

For ordinary curves, these are “volcanoes”

For supersingular curves, graphs are -regular

Isogeny graphs are (optimal) expander graphs:

Take a random walk with degrees .

 Quickly converges to uniform distribution

We keep the same vertices, but edges change as changes

Bound between random j and uniform distribution is p^2/72, which leads to lambda = 2 log p.

50

Representing isogenies efficiently

Working over , elements take 2log(p) bits

The curve has for

 and

Isogeny chains: , of prime degree . Can take

To send degrees, send , computable since small

To send curves, could send each . Takes bits

 Verifier checks for correctness

Or could send x-coordinate of kernel point . Use Velu to compute .

In SIDH setup, , and the point determines all the kernels. Just send which is n bits (as)

51

Optimizations for isogeny chains

Just send every other j-invariant. Then compute

 to recover the missing ones.

Alternatively, just send only least significant bits of the . Verifier finds roots of and chooses the right one.

Compression: Order elements of , and send index k for the right root of Send all the k using integer base

In SIDH setting, , and this is just n bits

Could also well-order points/subgroups rather than j-invariants…

Efficiency of isogeny step: for 2nd scheme, for 1st scheme (SIDH-based)

Compression seems optimal, since \prod (li+1) possible isogeny paths

For SIDH, each li=2 or 3. For other scheme li=O(log p)

52

Identification schemes

Interactive protocol between Prover and Verifier

Correctness – If Prover knows secret, then Verifier will accept

Soundness – If adversary doesn’t know secret, can’t convince Verifier

Honest Verifier Zero-Knowledge – transcript of honest execution reveals no information

Graph Isomorphism Protocol

Peggy knows graphs A and B are isomorphic. Wants to convince Victor.

Peggy creates isomorphic graph H.

Victor sends challenge bit. If 0, Peggy shows isomorphism to A. Else to B.

Repeat n rounds

Isogeny-based ID scheme

Original de Feo/Jao/Plut SIDH paper had identification scheme

Secret Key: SS curve E, with torsion point S defining isogeny

Public: The curves . Generators of , and

ID protocol:

	1) Peggy chooses random and computes diagram.

	Sends and to Victor.

	2) Victor sends random bit to Peggy

	3) If b=0, Peggy reveals and . Victor accepts if they

	have the right order and generate and

	4) If b=1, Peggy reveals . Victor accepts if it has the

 right order and that it generates

From SIDH to Signatures

Fiat-Shamir transform makes signature schemes from ID schemes

Idea: make interactive protocol non-interactive by using random oracle to produce the challenges

Unruh transform – variant of Fiat-Shamir that provides security against quantum adversaries.

This work: Full specification of how to do this in a smart way

Use optimizations on representing curves and isogeny chains

Secure under chosen message attack in Random Oracle Model

Efficiency

Secret key: bits, Public Key: bits ()

Signature size: at least 6 bits

Both signing/verifying are bits, where is security parameter

A new isogeny-based ID Scheme

Motivation: SIDH isogeny problem isn’t general

Let be curve with for which End can be computed

Take random isogeny (walk in the graph) . Using this knowledge, can compute End(.

Public Info: Secret: End(

Protocol: 1) Prover computes random , and

 reveals to Verifier.

	2) If verifier challenge = 0, reveal

	3) If challenge = 1, compute End(, and then

	 (is independent of)

	4) Verifier accepts if isogeny is correct

Primes of special form, reveal auxiliary points, isogenies of low degree

Computing eta independent of E1 is non-trivial and works in the quaternion algebra.

Lots of technical details.

56

Technical details	

If then prover does:

Compute End and translate the isogeny path from to into a corresponding ideal I giving the path in the quaternion algebra

Use the powersmooth version of the quaternion -isogeny algorithm to compute another path between End and End, which is independent of , represented by an ideal J

Translate the ideal J to an isogeny path from to

I’ll skip the very detailed technical stuff about how to do the computations involved in the Deuring correspondence

Kohel/Lauter/Petit/Tignol algorithm is the quaternion version of SS l-isogeny path problem:

Given E0, E1 and small l, find an l-power isogeny E0->E1.

The isogeny version is basis for isogeny hash function

(need to be able compute End(E) to use alg to break hash)

57

The Signature Scheme

KeyGen:

Given security parameter , choose of size bits. Fix as small as possible s.t.

Perform random isogeny of degree from (with to curve with .

Compute and ideal I corresponding to .

Public Key: , where H is a hash function

Secret key:

Fiat-Shamir

58

The Signature Scheme

Signing

For each , generate a random isogeny of degree ending at

j-invariant .

Compute and parse as t challenge bits

Use ID scheme: For each , if , use the technique given to find

If , set .

Signature is .

Verification

For each , use to compute . Check that .

Security

SSIP: Given two SS curves chosen uniformly at random, find an isogeny between them.

If SSIP is hard, the signature scheme is secure in ROM under a chosen message attack.

If SSIP is hard, then the signature scheme obtained from Unruh’s transformation is a secure signature scheme against quantum adversaries in the ROM.

Efficiency

Best classical algorithm for computing End(E) is , hence can take

				This Signature Scheme		SIDH Signature Scheme

		Security Parameter 				

		Signature size				

		Public Key size				

		Secret key size				

		Signing time				

		Verifying time				

Summary

SIDH

State-of-the-art implementation of SIDH

~ 3 x faster than previous work, constant-time

Parameters for 128 bits of quantum security/192 bits classical security

Public Key size: 4512 bits. Private Key size: 384 bits

ECDH+SIDH hybrid: adding ECDH only adds about 15% in time/memory

Security of SS isogeny crypto

Active attack against static key variant of SIDH

Hardness of computing End(E) is necessary for security

Bit security for computing j(E)

SS isogeny signature schemes

2 signature schemes which rely on supersingular isogenies

Second scheme based on more general problem, computing End(E)

image1.png

image2.png

* Elliptic curves: E:y2 =x3+ax+b
3

* J-invariant j(E) = 1728m
* Asagroup, E(Fy) = Zy, X Zy, with m|n
* Over a finite field, #E(F,) = q + 1 —t, with [t| < 2,/q

* If t = 0 mod p, then E is supersingular, otherwise E is ordinary
* If End(E) is an order in a quaternion algebra, then E is supersingular
* If End(E) is an order in an imaginary quadratic field, then E is ordinary

* Curves in these papers have #E(Isz) = (p £+ 1)?, so E is supersingular

image3.jpeg

image4.emf

image5.png

* Isogeny — (nonconstant) rational homomorphism from E — E’
* Examples

« mE(F,) - E(F,), n(x,y) - (xP,yP)
. q)n:E - E, qon(P) = [Tl]P

* Tate’s Theorem: E and E’ are isogenous over [, iff #E(F,) = #E'(F,)

* [sogenous curves form equivalence relation (quotient out by
isomorphism classes)
* Curves in same isogeny class are all supersingular, or all ordinary

image6.png

* An £-isogeny is a (separable) isogeny whose kernel has cardinality

* For every subgroup F of order £, E has an £-isogeny with kernel F
* Given the kernel, can write the isogeny using Velu’s formula

* Each ¢-isogeny @: E — E' has a dual ¢-isogeny §: E' - E
* The composition @ . = [£], the multiplication by £ map

* Every isogeny (with degree >1) can be factored into a composition of
prime degree isogenies over [,

* There is a polynomial ®,(X,Y) such that £ and E’ are £-isogenous iff
DG (E)J(ED) =0

image8.png

Let E be an elliptic curve with finite subgroup F.
Then there is an isogeny ¢ from E, with kernel F.

FOI’P = (xp,yp)$ F, Iet

Recall, if |F| = /, then ¢ is an f-isogeny.

image9.png

(yP+Q _yQ)>
) yp+ Z

—xg),

xp + Z (xp+o

o(P) = (

Q+#0,Q€eF
Q+00,Q€eF

image11.png

* Let E be the curve y? = x3 —3915x + 113670.
» The points {(—21,+432),(51,+216), o} all have order 5.
* Then

p(x,y) =X,Y)

_ x5 — 60x* + 1350x3 + 1347300x2 — 82763775x + 1565892000

(x+21)2(x = 51)2
(x3 —225x2 + 12555x — 374355)(x3 + 135x2 + 14715x — 487755)

=y G+ 203 (x — 51)3

* The isogeny ¢ is a 5-isogeny to the curve
y? =x3 —16875x — 9956250.

image7.png

* Supersingular curves are all defined over Isz

* For every prime € t p, there exist £ + 1 isogenies of degree € from
supersingular E
* For ¢, there are £¢71(£ + 1) isogenies of degree £¢

« £-torsion of £, denoted E[£], is the set of all points of order £
(over [Fp)
* For supersingular E in these papers, E[¢¢] S E(F,2)

o E[£¢] = Zpe X Zpe,assuming £ t p

image10.png

* Anisogeny ¢: E — E is an endomorphism.
* Endomorphisms form a ring

* (@ +P)(P) = ¢(P) +Y(P), (p¥)(P) = p(Y(P))

* If E is ordinary, then End(E) is an order in an imaginary quadratic field
* i.e., there exists an isogeny ¢, with ¢p2(P) = [—d]|P

* If E is supersingular, then End(E) is an order in a quaternion algebra

image12.png

Given a,b we set

i2=a,j?=h,

ij =k, ji=—k

k% = ijij = —iijj = —ab
Elements are of the form a + Bi + 6j + vk
Hamiltonian quaternions area = b = —1
For these papers,a = —=1,b = —p
Under correspondence, (1,1, j, k) - (1 (j) T, o)
m(x, y) = (xp,yp)

working over the curve E(sz): y? = x3 + x, with p = 3mod 4

image13.png

* General Problem: Given two isogenous elliptic curves, construct an
isogeny between them (over finite fields)

* Ordinary curves

+ Galbraith/Stolbunov — classical 0(q/%)

* Childs/Jao/Soukharev — quantum subexponential Lq(%,‘/;) (needs GRH)
 Supersingular curves

+ Delfs/Galbraith — classical 0(q/?)
* Biasses/Jao/Sankar — quantum 0(q1/4)

* SIDH is not completely general — low/smooth degree
+ Claw problem — classical 0(q'/#), quantum 0(q'/®)

image14.png

. 1) Given prime p, l and SS curve E(F,2) chosen randomly F|nd curve
E’ (Fp2) and two isogenies ¢y, ¢, E - E' with degrees [¥1, [¥2

* 2) Given prime p, , and SS curves E, E' over F_» with #(E) = #(E)
chosen uniformly at random. Find isogeny ¢: % — E’ of degree [*.

* 3) SIDH:_ Let prime p = [;A1;F + 1. Ey(F,,2) is SS curve with bases {R;, S;}

for Eo[Ii']. Let ¢p: Ey — Elbe isogeny with kernel < mqR, +n.S, >, with
ml,nlchosen randomly. Given E; and ¢(Rg), (Sp) flndAgenerator of <
miR, + 1S, >, i.e. find ¢.

* 4) Decisional version of 3....
* 5) p prime, SS curve E(F,2) chosen randomly. Compute End(E).

* 6) p prime, SS curves E,E' over F,2 with #(E) = #(E") chosen uniformly
at random. Find isogeny ¢: E — ik

image130.png

* SIDH uses isogenies with exponentially large (but smooth) degree
* Compute them using composition of low-degree isogenies

* Fix two small primes €4, €5, then choose prime p = fflAngf +1

» Construct supersingular £ with #E (F,2) = (p £ 1)* = (fjAngf)z

* This paper proposes p = 23723239 — 1 with E:y? = x3 + x
* Use Fp2 = Fp (i), with i* = —1

* logp = 768 bits = 768/6=128 bits quantum security, 768/4=192 bits
classical security

image140.png

* Let Py, Q4 be generators of E[£34],
(and analogously for Pg, Qp)
* Alice’s private key:

. eA
* twointegersmy,ny t £,
* Isogeny @4: E = E,4 with kernel < my Py +1ny0Q4>

* Alice’s public key: E,, and ¢, (Pg), 94(Q5)
* (Bob does the analogous thing)

image15.tmp

0.pdl - Adobe Reader
File Edit View Window Help

Bon | @RB@E S| [1]0|[us=]]]) -
U]

R=msPqs+ns0Q4

S =mpgPg+ngQp

E/(S)—= E/(R.S)

’)‘“‘.1

image16.png

* Let P4, Q4 be generators of E[£54],
and analogously for Pg, Qg

* Alice’s private key:
* twointegersmy, ny t €5
* Isogeny @4: E — E, with kernel < my Py +ny0Q 4>

* Alice’s public key: E4, and @4 (Pg), 94(Qp)
* (Bob does the analogous thing)

* Alice computes ¢'4: Eg = Eg4 with kernel < myu@p(Py) + ngpp(Qy) >
=< @p(MaPy + n4Q,4) >
=< ¢p (Ry) >

.... and Bob does similarly

* Egy = E p and the shared secret is j(E4g) = j(Ega)

image17.png

* Recall, need two independent points of order £¢
* Use base field and trace-zero torsion subgroups
* Base field: E[¢¢] € E(IF,), generated by <P>
s Let7(x,y) = (—x,iy), where i? = —1
e Trace-zero: Use < 7(P)>, which has order £¢, and is independent of P
. Tr(T(P)) =1(P) + Frob(‘[(P)) = (—x,iy) + (—x,—iy) =
* Only needs two FF,-elements to represent this, instead of four

* P, = [3239](z,Vz3 + z), for smallest z (which is 11), Q4 = ©(P,)
* Py = [2372](6,V63 + 6), Q5 = t(Pp)

image18.png

* Alice needs to choose my, ny so that myP, + nyQ4 has order £¢4

« She randomly chooses m’ € {1,2, ...,26471 — 1} and setsR, = P, +
[Zm']QA

* Easy proof shows it has full order
* Only reaches 1/3 of possible Ry

* Bob does the same, but with B’s instead of A’s and 3 instead of 2
* They then still need to compute their isogenies...

image19.png

* Let R be a point of order £¢. How to compute isogeny ¢ with kernel <R>?

s Example: E(F;,;) = y% =x3 + 114x + 79, #E = 128
R = E(34,29) has order 16
* Velu’s formula directly needs R,2R,....,15R, then 0(163) work

image20.png

Let R be a point of order £¢. How to compute isogeny ¢ with kernel <R>?

Example: E(F;,,) == y? = x3 4+ 114x + 79, #E = 128
R = E(34,29) has order 16
Velu’s formula directly needs R,2R,....,15R, then 0(163) work

Better: ¢pp = 3 0 ¢, © Py © Py, each ¢; is of degree 2, 0(23) work
* 2-isogeny: (0,0) on y? = x3 + Ax? + x

—1\2
(x,y) » 25y - %))

image29.png

bo

image21.png

* For ¢y, need 8R (which has order 2)

image22.png

image23.png

2R,

image24.png

(2]

image25.png

image26.png

4R

image27.png

(2]

image28.png

8R,

image31.png

R1 = ¢o(Ro)

image32.png

image33.png

2R,

image34.png

image35.png

4R,

image36.png

$1

image30.png

* For ¢y, need 8R (which has order 2)
* For ¢4, need 4R; (which has order 2)

image38.png

Ry, = ¢1(Ry)

image39.png

(2]

image40.png

2R,

image37.png

* For ¢y, need 8R (which has order 2)
* For ¢4, need 4R; (which has order 2)
* For ¢,, need 2R, (which has order 2)

image41.png

b2

image42.png

* For ¢y, need 8R (which has order 2)
* For ¢4, need 4R; (which has order 2)
* For ¢,, need 2R, (which has order 2)
* For ¢o3, need R (which has order 2)

image43.png

R3; = ¢,(Ry)

image44.png

b3

image45.png

* For ¢y, need 8R (which has order 2)
* For ¢4, need 4R; (which has order 2)
* For ¢,, need 2R, (which has order 2)
* For ¢o3, need R (which has order 2)

* Pr = P30 Py 0Py 0Py isdegree 16
with kernel < R >

image46.png

bo

image47.png

Ri = ¢o(Ro)

image48.png

4R,

image49.png

¢

image50.png

image51.png

image52.png

bo

image53.png

Ry = ¢1(Ry)

image54.png

$1

image55.png

2R,

image56.png

b2

image57.png

R3 = ¢,(Ry)

image58.png

¢s3

image59.png

* Let R be a point of order #¢. How to compute isogeny ¢ with kernel
<R>?

«SetE, = E,Ry =R

* Ejyq = Ei/<£°77IR; >

* ¢iiE = Ejyq

* Riv1 = ¢i(Ry)

*ThenE/<R>=E,and ¢ = ¢pp_1 00 ¢y
* Need to know the bottom row of the graph

* Turns out a hybrid approach is best

image16.tmp

@ 506.pdt - Google Chrome
J Moo somossysGgn X 7

& = € [eprintiacr.org/2011/506.pdf

uopar

LUCA DE FEO, DAVID JAO, AND JEROME PLOT

Ro
,’«
Ug o
[(Ry o . Ry
@ fo, 6

[*|Ro & . iu Ry

)R [FIR: [P)Rs [()Rs

FIGURE 2. Computational structure of the construction of ¢ = @5 0--- 0

do-

Since the degree of ¢ is smooth, it is best to decompose it as a chain of f-isogenies. Set Ey = E, Ry = R
and, for 0 <i <e, let
Eip=E/(t"7'R), ¢:i:Ei = Eipi, R = 6i(R)).
Then E/(R) = E. and 6 = ¢e_y 0--- 0 do.
The curve E and the isogeny ¢; can be computed using Vélu's formulas [48], once the £-torsion subgroup
(R:) of E; is known. This immediately suggests two strategies having quadratic complexity in e, as described
in [19].

However, we can do much better. Figure 2 summarizes the computational structure of the problem for
& D i

image17.tmp

AV A A AN AN A I

image18.tmp

image63.png

* Projective coordinates for points and curve coefficients
* Avoid inversions — only 3 total needed
* Montgomery curve Eg p: by? = x3 + ax? + x
Egpc:By? = Cx® + Ax* + Cx
* Use the Kummer variety
* Work with x: Eg ,/(+1) » P!, (X:Y: Z) - (X: Z)
* Efficient algorithms for xADD: (x(P),x(Q),x(P — Q)) - x(P + Q), xDBL,
xDBLADD, LADDER, xTPL, etc.... that only depend on x’s and coefficient a
* Efficient projective 3-isogeny, 4-isogeny formulas

* Efficient field arithmetic, modular reductions, etc...

image15.png

* 3.4 GHz Intel Core i7-2600 Sandy Bridge and 3.4GHz Intel Core i7-
4770 Haswell processors

* Measured in millions of
clock cycles

* Prior work wasn’t
constant time

* For comparison, prior work has their key exchange on 2.4 GHz Intel
Core i5 taking .22 seconds, so now maybe =0.07 seconds?

image19.tmp

“This work

Prior work [2]

Operation Sandy Sandy
g | Fswell | g | Hawel
Alice's keygen 50 3 6)
Bob’s keygen 58 54 172 152
Alice's shared key a a 133 18
Bob’s shared key 56 52 137 122
Total o1 196 608 510

image20.tmp

./openssl speed

AWS c4.1arge (Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz)

Scheme Alice 0 Bob Alice1 Communication Security

A—B B—A | Class. PQ.
(ms) (oytes) (bits)

SIDH 156.84 3514 1497 564 564 192 128

McBits 69.92 0.04 0.15 311,736 109 157 157

LWE

Frodo 0.91 1.33 0.16 11,377 11,296 144 130

Ring-LWE

BCNS15 0.72 117 0.16 4,096 4,224 86 78

NewHope 0.05 0.08 0.02 1,824 2,048 281 255

NewHope- 1,824 2,176

Simple

Module-LWE

Kyber 0.06 0.08 0.09 1,088 1,152 178 161

image71.png

* Could partner SIDH with any DH scheme, but obvious advantages from
sharing the SIDH implementation

* Use same field [F,,, with p = 23723239 —1

* Choose ordinary, rigid, twist-secure curve E': y2 = x3 + ax + x, with
a = 624450

* Both E’ and it’s twist have order 4 times a 749 bit prime

* About a 15% penalty in time/memory

image21.tmp

Standalone Tybrid
comparsen SIDH SIDH+ECDH
= bitsccurity Classical 102 (SSDDH) | 384 (ECDHP)
(hard problem) PQ 135 (SSDDH) | 128 (SSDDH)
public key size T 561 T =]
“Alice’s keygen i B
speed Bob's keygen 51 60
(cc x10°) Alice’s shared key 4 50
Bob's shared key 52 58

image68.png

* De Feo/Jao/Plut proved SIDH is session-key secure in the
authenticated-links adversarial model of Canetti and Krawczyk

* Assumes perfectly authenticated links, which basically forces the adversaries
to be passive eavesdroppers

* This can be okay for ephemeral use, but not for real-world use (where static
private keys are reused)

e SSDDH: Differentiate between

(Ea, Eg, $a(Pg), 04(Qp), 5 (Ps), Pp(Q4), Esp), Where
Eap = Ey/(myPy + nyQ4, mpPp + ngQp)

Where the my4,ny, mg, ng are actual parameters or chosen randomly

image69.png

* |f SIDH private keys are reused, then public key validation is necessary

* See Failure is not an option: Standardization issues for Post-Quantum key
agreement, which described “indirect validation”

* Public key validation for ECC easy — check a point is on correct curve

* For SIDH, to validate:
* need to check points P and Q have order ¢ on the same curve E’,
* Check E’ is isogenous to public curve E,
* Check that Q # kP

image70.png

* Check Q #+ kP
* Compute Weil pairing e(P, Q) — check it’s order
* Check P, Q have the right order
* Checking point’s order only involves doubling or tripling

* Check the curves E, E’ are isogenous
* Tate’s Theorem: check E, E’ have the same # of points

* Avoid need to select random point (and hence square root) by using fact that a point
with given x-coordinate is on the curve or its twist,

* Then check that point’s order (either (p + 1)% or (p — 1)?)

* Cost of validation: = 40% of (KeyGen + SharedSecret) runtime
* Original version was around = 130% of runtime

image60.png

* If using static keys, attacker could do small subgroup/invalid curve
type active attack on SIDH — hence need public key validation

* Alice’s private key is (my4,n,). Bob sends (E, P, Q) and Alice
computes isogeny ¢: E - E' with kernel < myP +n,Q >
* Alice should check what Bob sends, how SIDH paper described
* Can do partial validation (NSA talk at NIST PQC workshop). Perform key
exchange and then each party encrypts randomness used and sends to the
other party. But this reveals Bob’s key to Alice
* Key Fact: There is an equivalent key of form (1, a) or (a, 1)

* They generate the same subgroup < myP, +nyQ,4 >

image61.png

* Oracle: Bob sends (E, P, Q) and Alice returns E’, where isogeny ¢: E — E’
has kernel < myP + ny,Q >

* Differentiate between (1, a) or (a', 1)
e Canassume ' is even

* Attacker generates ephemeral values (EB,R = pp(Py),S = ¢>B(QA)) and follows
protocol to get resulting key j(E4g)

* Attacker sends (Eg, R + [2"71]S, S) to Alice and checks if j = j(E4g)
* If so, the isomorphismimplies < [m4](R + [2"71]S) + [n4]S >=< [m4]R + [n4]S >, but
this is true iff my is even
* Is a even or odd?
* Similarly test (Eg,R,S + [2"1]R) to see if n, is even

* Note: These queries pass SIDH validation checks

image62.png

* Assumption: the key is (1, @), and we know one bit a of «
a=ay+a;2t +- 4+ a, 2"t
* How to learn one more bit:
* Attacker queries (Eg, R — [2™"2a,]S, [1 + 2™72]S)
* If same j then a; = 0, otherwise a; =1

* They continue in an iterative fashion to learn all but the last 2 bits, in
a way that passes validation.

* Wouldn’t pass “indirect validation” technique
* (They can generalize the attack for when [# 2)

image64.png

* Recall that if we can compute isogenies between E and E’, we can
compute End(E).

* Also, heuristically the converse is true: If can compute endomorphism
rings, we can find isogenies between two curves.

* But what about the degree? SIDH isogenies have small degree O(pl/z)

* Galbraith shows how if can compute endomorphism rings of SIDH curves,
then can compute the SIDH isogenies

* Key is knowing what the degree needs to be (which is small)

* Thus, for SIDH, necessary to assume computing End(E) is hard

image65.png

Bit security of j(E4g)

image66.png

* Does knowing one (or a few) bits of j(E,5) help an attacker?
 Similar to results “hardcore bits” for DH in Z;;, and for DSA and ECDSA

* We have j = j; +j,0, where F,2 = F,(0)

* Modular polynomials ¥,.(x, y): There is a degree risogeny ¢: E — E’
|fand only if ¥ (](E)](E)3,

- grows crazy fast —only need r = 2 3
. Substituting in known values of j, reduces to recovering roots
* Computing j; or j, is as hard as computing j
* If know partial components, can use lattice methods to possibly recover j

image67.wmf

K

K

+

+

+

+

+

+

+

+

+

=

Y

11

11

2

11

3

11

4

11

5

11

6

11

7

11

8

11

9

11

10

11

11

11

12

12

11

3200000

5524057528

2964709023

5817612

5670139351

3746420063

522600

8056645815

2720981165

1795

4463961386

5291348418

20

7749284675

4297837238

2883039048

1789952627

5641712

4257039313

6490

6105898865

6

5368682281

28278756

8184

)

,

(

X

Y

X

-

Y

X

Y

X

-

Y

X

Y

X

 -

Y

X

Y

X

-

Y

X

Y

X

 -

Y

X

Y

 X

 Y

X

Y

X

image72.png

Modular Polynomials W,.(x, y)

image73.png

+ 8 more pages + ...
+ 392423345094527654908696 (100 digits omitted)....000

+ W, takes 100MB to store coefficients.

oleObject1.bin

image74.png

* Previous signatures schemes based on isogenies:
* (interactive) undeniable signature scheme
* Designated verifier signature (for only one verifier)

* This work:

* Signature scheme based on SIDH

1/4) 1/6)

* Best classical attack is O(p

* New signature scheme based on hardness of computing End(E)
1/2 1/4

), quantum attack is O(p

* Best classical attack is O (p'/?), quantum attack is O (p

image75.png

T3 slidePlayer 15723

image76.png

* Let p = 5 be prime. The number of supersingular j-invariants in char. p is
N, = E + €,, where €, € {0,1,2} depending on p mod 12.

* Create l-isogeny graph, where vertices are j-invariants, and edges
correspond to degree [isogenies
* For ordinary curves, these are “volcanoes”
* For supersingular curves, graphs are (I + 1)-regular
* Isogeny graphs are (optimal) expander graphs:
* Take a random walk with degrees [;.

Quickly converges to uniform distribution
* We keep the same vertices, but edges change as [changes

image77.png

* Working over F 2, elements take 2Iog(p) bits

* The curve E: y? = x3 + 25— % T T2 has j(E) = j, forj#0,1728

+j=0:y?2=x3+1andj=1728: y? =x3 +x
* Isogeny chains: ¢;: E;_; — E;, of prime degree [;. Cantake [; > [;_;
* To send degrees, send N =[]~ [;, computable since [; small
* To send curves, could send each j;. Takes 2(n + 1) logp bits
Verifier checks Wy, (j;_4, j;) for correctness

* Or could send x-coordinate of kernel point P; € Ej,. Use Velu to compute

¢l 11_>E

* In SIDH setup, I; = [, and the point R + [«]S determines all the kernels. Just
send a which is n bits (as | = 2)

image78.png

* Just send every other j-invariant. Then compute
ged(Wy, Gi-1,¥), Yie1 (0, i 1))
to recover the missing ones.

* Alternatively, just send only least significant log(l; + 1) bits of the j;. Verifier
finds roots of Wy, (j;—1,y) and chooses the right one.

* Compression: Order elements of F,z, and send index k for the right root j; of
W;,(ji—1,¥)- Send all the k using integer base [[}=;(I; + 1)
* In SIDH setting, [; = 2, and this is just n bits

* Could also well-order points/subgroups rather than j-invariants...

« Efficiency of isogeny step: 0 (log?® p) for 2" scheme, O (logp) for 15t scheme
(SIDH-based)

image79.emf

image80.tmp

image81.png

* Original de Feo/Jao/Plut SIDH paper had identification scheme
* Secret Key: SS curve E, with lflA —torsion point S defining isogeny ¢: E - E/< S >
* Public: The curves E, E/< S >. Generators P, Q of E[I;F], and ¢(P), $(Q)

* |D protocol:
1) Peggy chooses random R = a4 P + a,Q and computes diagram.
Sends E /(R) and E /(S, R) to Victor.
2) Victor sends random bit to Peggy
3) If b=0, Peggy reveals R and ¢'(R). Victor accepts if they
have the right order and generate ¥ and i’
4) If b=1, Peggy reveals (S). Victor accepts if it has the
right order and that it generates ¢’

image82.png

* Fiat-Shamir transform makes signature schemes from ID schemes

* Idea: make interactive protocol non-interactive by using random oracle to produce
the challenges

* Unruh transform —variant of Fiat-Shamir that provides security against quantum
adversaries.
* This work: Full specification of how to do this in a smart way
* Use optimizations on representing curves and isogeny chains
* Secure under chosen message attack in Random Oracle Model

* Efficiency
* Secret key: 2 log p bits, Public Key: 13 log p bits (logp = 4 1)
* Signature size: at least 612 bits
* Both signing/verifying are 0(43) bits, where 1 is security parameter

image83.tmp

image84.png

* Motivation: SIDH isogeny problem isn’t general
* Let E, be curve with for which End(E,) can be computed

* Take random isogeny (walk in the graph) ¢: E; — E;. Using this
knowledge, can compute End(E;).
* PublicInfo: (Egy, Eq) Secret: End(E;)

* Protocol: 1) Prover computes random y: E; — E,, and
reveals E, to Verifier.
2) If verifier challenge =0, reveal
3) If challenge =1, compute End(E,), and then
(n is independent of E;)
4) Verifier accepts if isogeny is correct

image85.tmp

vl

image86.png

* If b = 1, then prover does:

» Compute End(E,) and translate the isogeny path from Ej to E, into a
corresponding ideal / giving the path in the quaternion algebra

* Use the powersmooth version of the quaternion [-isogeny algorithm to
compute another path between End(Ej) and End(E;), which is independent
of E;, represented by an ideal J

* Translate the ideal J to an isogeny path n from E, to E,

* |'ll skip the very detailed technical stuff about how to do the
computations involved in the Deuring correspondence

image87.png

* KeyGen:

* Given security parameter A, choose p = 3 mod 4 of size 24 bits. Fix B, 54, S>
as small as possible s.t.

€L
L 20\
S = lef‘i",lz‘i < B,gcd(S,,S,) = 1,and H(lk- :;) < 72/p?
i L

Perform random isogeny ¢ of degree S; from E, (with j(Ey) = 1728) to
curve E; with j(E;) = j;.

Compute 04 = End(E;) and ideal / corresponding to ¢.

Public Key: (p, jo, j1, H), where H is a hash function

Secret key: (Ey, E1,04,1)

image88.png

* Signing
* Foreachi =1, ..., t, generate a random isogeny 1); of degree S, ending at
J-invariant j ;.
* Compute h = H(M,jz,l, ...,jz,t), and parse as t challenge bits b;.
* Use ID scheme: For each i, if b; = 1, use the technique given to find z; = 7;.
If b; =0, set z; = ;.
* Signatureis g = (h, zq, ..., Z¢).
* Verification
* For each i, use z; to compute E, ;. Checkthath = H(M, jy1, ..., jz,)-

image89.png

* Best classical algorithm for computing End(E) is O (y/p), hence can
take logp = 24.

image90.png

_ This Signature Scheme SIDH Signature Scheme

Security Parameter A A=(1/2)logp A=(1/4)logp
Signature size 1542 = (15/4)log? p 612 = (3/2)log?p
Public Key size 61 =3logp 521 =13logp
Secret key size 21 =logp 81 =2logp
Signing time 0(2%) 0%

Verifying time 02> 0(2%)

Effcient algorithms for supersingular
isogeny Diffie-Hellman (SIDH)

