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History of isogeny-based crypto

2003 Teske - key escrow system

2006 Rostovtsev/Stolbunov – Key exchange, encryption

2012 Stolbunov’s dissertation

2007 Charles, Goren, Lauter - hash function

2010 Childs, Jao, Soukharev - quantum attack on ordinary curves

2011 Jao, De Feo – SIDH

2011 Jao, De Feo, Plut – encryption, extended SIDH + implementation

2012 Xi, Tian, Wang – designated verifier signature scheme

2014 Azarderakhsh, Fishbein, Jao – implementation of SIDH

2014 Jao, Soukharev – isogeny based undeniable signatures

2016 Costello, Longa, Naehrig –  state-of-the-art implementation of SIDH

2016 Galbraith et. al. – isogeny-based signature schemes





Background

Elliptic curves:  

J-invariant 

As a group, , with 

Over a finite field,  with 

If , then E is supersingular, otherwise E is ordinary

If End(E) is an order in a quaternion algebra, then E is supersingular

If End(E) is an order in an imaginary quadratic field, then E is ordinary

Curves in these papers have , so E is supersingular















Isogenies

Isogeny – (nonconstant) rational homomorphism from  

Examples







Tate’s Theorem: E and E’ are isogenous over  iff 



Isogenous curves form equivalence relation (quotient out by isomorphism classes)

Curves in same isogeny class are all supersingular,  or all ordinary









Isogeny Degrees

An -isogeny is a (separable) isogeny whose kernel has cardinality 

For every subgroup F of order , E has an -isogeny with kernel F

Given the kernel, can write the isogeny using Velu’s formula

Each -isogeny  has a dual -isogeny 

The composition  the multiplication by  map

Every isogeny (with degree >1) can be factored into a composition of prime degree isogenies over 

There is a polynomial  such that E and E’ are -isogenous iff 
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Velu’s Formula

Let E be an elliptic curve with finite subgroup F.  

Then there is an isogeny  from E, with kernel F.  



For  F, let











Recall, if |F| = l , then  is an l-isogeny.









Velu’s Formula - Example

Let E be the curve 

The points  all have order 5.

Then











The isogeny  is a 5-isogeny to the curve









Supersingularity and isogenies

Supersingular curves are all defined over 

For every prime , there exist  isogenies of degree  from supersingular E

For , there are  isogenies of degree 

-torsion of E, denoted  is the set of all points of order  (over) 

For supersingular E in these papers, 

 assuming 







Endomorphism rings

An isogeny  is an endomorphism.

Endomorphisms form a ring





If E is ordinary, then End(E) is an order in an imaginary quadratic field

i.e., there exists an isogeny with 



If E is supersingular, then End(E) is an order in a quaternion algebra





Quaternion Algebras

Given a,b we set







Elements are of the form 

Hamiltonian quaternions are 

For these papers, 

Under correspondence, 





working over the curve  with 







Pi(pi(P))=(x^p^2,y^p^2).  Elements have order p^2-1, so =(x,y).  

Group is Z(p+1) x Z(p+1).  -pP=P   pi^2=-p.  
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Security of isogeny-based crypto

General Problem:  Given two isogenous elliptic curves, construct an isogeny between them  (over finite fields)

Ordinary curves

Galbraith/Stolbunov – classical 

Childs/Jao/Soukharev – quantum subexponential  (needs GRH)

Supersingular curves

Delfs/Galbraith – classical 

Biasses/Jao/Sankar – quantum 

SIDH is not completely general – low/smooth degree

Claw problem – classical , quantum 











Claw Problem:  For given two functions, f and g, the goal of the problem is to find x and y such that f(x)=g(y).
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Isogeny Problems

1) Given prime  and SS curve  chosen randomly.  Find curve  and two isogenies  with degrees .

2) Given prime , and SS curves  over  with  chosen uniformly at random.  Find isogeny of degree .

3) SIDH:  Let prime .   is SS curve with bases  for .  Let be isogeny with kernel , with chosen randomly.  Given  and  find generator of , i.e. find .

4) Decisional version of 3….

5)   prime, SS curve  chosen randomly.  Compute End(E).

6)   prime, SS curves  over  with  chosen uniformly at random.  Find isogeny 





Was basis for hash function

Slight variation of 2) Basis for SIDH schemes

3) And 4) are actual basis for SIDH

3 and 4) are weaker than 1) and 2) because extra info is given, special prime form, and small degree isogenies exist. 

5,6 more general.  If can solve 2 or 6, can solve 5.  Set E0=E1 and find isogenies = endomorphisms.  Easy to find independent ones, which form a low index subring.

Heuristically the converse is true (use isogeny – ideal correspondence of Deuring) 

5 is basis for Galbraith’s signature scheme
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Parameters for SIDH
(Costello, Longa, Naehrig)

SIDH uses isogenies with exponentially large (but smooth) degree

Compute them using composition of low-degree isogenies

Fix two small primes , then choose prime 

Construct supersingular E with  

This paper proposes , with 

Use , with 

bits   768/6=128 bits quantum security, 768/4=192 bits classical security





SIDH key-exchange

Let  be generators of 

    (and analogously for 

Alice’s private key: 

two integers 

Isogeny  with kernel >

Alice’s public key: , and 

(Bob does the analogous thing)

Alice computes  with kernel  …. and Bob does similarly

and the shared secret is 





SIDH key-exchange



Let  be generators of 

    and analogously for 

Alice’s private key: 

two integers 

Isogeny  with kernel >

Alice’s public key: , and 

(Bob does the analogous thing)

Alice computes  with kernel 

					          

…. and Bob does similarly

and the shared secret is 





KeyGen details (1)

Recall, need two independent points of order 

Use base field and trace-zero torsion subgroups

Base field:  , generated by <P>

Let , where 

Trace-zero:  Use < >, which has order , and is independent of P

Tr

Only needs two -elements to represent this, instead of four

for smallest z (which is 11), 







KeyGen details (2)

Alice needs to choose  so that has order 

She randomly chooses  and sets 

Easy proof shows it has full order

Only reaches 1/3 of possible 

Bob does the same, but with B’s instead of A’s and 3 instead of 2

They then still need to compute their isogenies…





Computing the isogenies

Let R be a point of order .  How to compute isogeny with kernel <R>?



Example:  ,         

            	 has order 16

Velu’s formula directly needs R,2R,….,15R, then  work



Better:  , each  is of degree 2,  work

2-isogeny:   on 







Iterative way described is going to the right first, then going left.
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Computing the isogenies

Let R be a point of order .  How to compute isogeny with kernel <R>?



Example:  ,         

            	 has order 16

Velu’s formula directly needs R,2R,….,15R, then  work



Better:  , each  is of degree 2,  work

2-isogeny:   on 
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Example:  16-isogeny

For , need  (which has order 2)
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Example:  16-isogeny – isogeny variant

For , need  (which has order 2)
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 is degree 16
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Computing the isogenies

Let R be a point of order .  How to compute isogeny with kernel <R>?

Set 







Then  and 

Need to know the bottom row of the graph

Turns out a hybrid approach is best









Iterative way described is going to the right first, then going left.

Don’t compute two ways to a point

Left/right are O(n^2), whereas middle is O(n log n)
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Optimal Strategy







Technical improvements

Projective coordinates for points and curve coefficients

Avoid inversions – only 3  total needed

Montgomery curve 

			       

Use the Kummer variety

Work with , 

Efficient algorithms for xADD: xDBL, xDBLADD, LADDER, xTPL, etc…. that only depend on x’s and coefficient a

Efficient projective 3-isogeny, 4-isogeny formulas

Efficient field arithmetic, modular reductions, etc…





Performance

3.4 GHz Intel Core i7-2600 Sandy Bridge and 3.4GHz Intel Core i7-4770 Haswell processors

Measured in millions of

   clock cycles

Prior work wasn’t 

   constant time

For comparison, prior work has their key exchange on 2.4 GHz Intel Core i5 taking .22 seconds, so now maybe  0.07 seconds?







Stolbunov’s – 229 s.  Original SIDH was .4 seconds.  
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Comparison 

Using Ebacs – roughly

		DH Algorithm		KeyGen (cycles)		SharedSecret (cycles)

		SIDH		100,000,000		96,000,000

		Curve 25519		172,000		163,000

		Ed448 (Goldilocks)		176,000		470,000

		NIST P-256		246,000		600,000









Comparison

Table is from Tancrede Lepoint, SRI International





BigMont – SIDH+ECDH hybrid

Could partner SIDH with any DH scheme, but obvious advantages from sharing the SIDH implementation

Use same field  with 

Choose ordinary, rigid, twist-secure curve , with 

Both E’ and it’s twist have order 4 times a 749 bit prime

About a 15% penalty in time/memory
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Security of SIDH

De Feo/Jao/Plut proved SIDH is session-key secure in the authenticated-links adversarial model of Canetti and Krawczyk

Assumes perfectly authenticated links, which basically forces the adversaries to be passive eavesdroppers

This can be okay for ephemeral use, but not for real-world use (where static private keys are reused)

SSDDH:  Differentiate between , where



Where the  are actual parameters or chosen randomly





Public key validation

If SIDH private keys are reused, then public key validation is necessary

See Failure is not an option: Standardization issues for Post-Quantum key agreement, which described “indirect validation”



Public key validation for ECC easy – check a point is on correct curve



For SIDH, to validate:

need to check points P and Q have order  on the same curve E’, 

Check E’  is isogenous to public curve E, 

Check that 
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Public key validation -- Improved

Check 

Compute Weil pairing  – check it’s order

Check P, Q have the right order

Checking point’s order only involves doubling or tripling

Check the curves E, E’ are isogenous

Tate’s Theorem:  check E, E’ have the same # of points

Avoid need to select random point (and hence square root) by using fact that a point with given x-coordinate is on the curve or its twist, 

Then check that point’s order (either  or 



Cost of validation:  % of (KeyGen + SharedSecret) runtime

Original version was around %  of runtime





P+1 is the correct isogeny class
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Summary of SIDH

State-of-the-art implementation of SIDH

~ 3 x faster than previous work, but is it fast enough?

Constant time implementation

Parameters for 128 bits of quantum security/192 bits classical security

Public Key size: 4512 bits.  Private Key size: 384 bits

ECDH+SIDH hybrid

Adding ECDH only adds about 15% in time/memory

Public-key validation







Active attack on static SIDH
(Galbraith, Petit, Shani, Ti)

If using static keys, attacker could do small subgroup/invalid curve type active attack on SIDH – hence need public key validation

Alice’s private key is .  Bob sends  and Alice computes isogeny  with kernel 

Alice should check what Bob sends, how SIDH paper described

Can do partial validation (NSA talk at NIST PQC workshop).  Perform key exchange and then each party encrypts randomness used and sends to the other party.  But this reveals Bob’s key to Alice

Key Fact:  There is an equivalent key of form  or 

They generate the same subgroup 





Check E is SS, P,Q on E and have right order, and are independent.  

This isn’t symmetric key exchange.  Bob does several computations, computes session key, then sends to Alice.  

If mA is odd, since working in group of order 2^n, it has an (odd) inverse theta.  Then theta(mA,nA) is an equivalent generator, but it equals (theta mA,theta nA)=(1,alpha).
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The attack – Step 1

Oracle:  Bob sends  and Alice returns , where isogeny  has kernel 

Differentiate between  or  

Can assume  is even

Attacker generates ephemeral values  and follows protocol to get resulting key 

Attacker sends  to Alice and checks if 

If so, the isomorphism implies , but this is true iff  is even

Is  even or odd?

Similarly test  to see if  is even

Note:  These queries pass SIDH validation checks





Can be done with weaker oracle:

Oracle 2: Bob sends  to Alice.  Alice returns 1 if )

For converse of iff:  if subgroups are equal, then lambda * LeftPoint = RightPoint, for lambda in Z_2^n*.  As R,S independent look at coeff of S to see lambda nA=nA, hence lambda=1.  Then look at coeff of R. mA+nA2^n-1=mA, so nA2^n-1 = 0 mod 2^n as R has order 2^n, so nA even.
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Continuing the attack

Assumption: the key is , and we know one bit  of 



How to learn one more bit:

Attacker queries  

If same  then , otherwise 



They continue in an iterative fashion to learn all but the last 2 bits, in a way that passes validation.

Wouldn’t pass “indirect validation” technique

(They can generalize the attack for when )
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Computing endomorphism rings

Recall that if we can compute isogenies between  and , we can compute End.  

Also, heuristically the converse is true: If can compute endomorphism rings, we can find isogenies between two curves.

But what about the degree?  SIDH isogenies have small degree )



Galbraith shows how if can compute endomorphism rings of SIDH curves, then can compute the SIDH isogenies

Key is knowing what the degree needs to be (which is small)



Thus, for SIDH, necessary to assume computing End(E) is hard







Bit security of 

Does knowing one (or a few) bits of  help an attacker?

Similar to results “hardcore bits” for DH in , and for DSA and ECDSA



We have , where 

Modular polynomials   There is a degree r isogeny   if and only if .

 grows crazy fast – only need 

Substituting in known values of j, reduces to recovering roots

Computing  or  is as hard as computing j

If know partial components, can use lattice methods to possibly recover j





Modular Polynomials 

+ 8 more pages + …



+ 392423345094527654908696 …. (100 digits omitted)….000



 takes 100MB to store coefficients.  











Phi 11 is 2.6K

Phi 73 is 1M

Phi 313 is 100M
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Supersingular Signatures
Galbraith, Petit, Silva

Previous signatures schemes based on isogenies:

(interactive) undeniable signature scheme

Designated verifier signature (for only one verifier)



This work:

Signature scheme based on SIDH

Best classical attack is ), quantum attack is )

New signature scheme based on hardness of computing End(E)

Best classical attack is ), quantum attack is )







Random walks in isogeny graphs

Let  be prime.  The number of supersingular j-invariants in char. p is , where  depending on p mod 12.

Create -isogeny graph, where vertices are j-invariants, and edges correspond to degree  isogenies

For ordinary curves, these are “volcanoes”

For supersingular curves, graphs are -regular

Isogeny graphs are (optimal) expander graphs:

Take a random walk with degrees . 

    Quickly converges to uniform distribution

We keep the same vertices, but edges change as  changes







Bound between random j and uniform distribution is p^2/72, which leads to lambda = 2 log p.  
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Representing isogenies efficiently

Working over , elements take 2log(p) bits 

The curve  has  for 

   and 

Isogeny chains: , of prime degree .  Can take 

To send degrees, send , computable since  small

To send curves, could send each .  Takes  bits

    Verifier checks  for correctness

Or could send x-coordinate of kernel point .  Use Velu to compute .  

In SIDH setup, , and the point  determines all the kernels.  Just send  which is n bits (as )
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Optimizations for isogeny chains

Just send every other j-invariant.  Then compute



   to recover the missing ones.

Alternatively, just send only least significant bits of the .  Verifier finds roots of  and chooses the right one.

Compression:  Order elements of , and send index k for the right root  of   Send all the k using integer base 

In SIDH setting, , and this is just n bits

Could also well-order points/subgroups rather than j-invariants…



Efficiency of isogeny step:  for 2nd scheme, for 1st scheme (SIDH-based)





Compression seems optimal, since \prod (li+1) possible isogeny paths

For SIDH, each li=2 or 3.  For other scheme li=O(log p)
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Identification schemes

Interactive protocol between Prover and Verifier

Correctness – If Prover knows secret, then Verifier will accept

Soundness – If adversary doesn’t know secret, can’t convince Verifier

Honest Verifier Zero-Knowledge – transcript of honest execution reveals no information

Graph Isomorphism Protocol

Peggy knows graphs A and B are isomorphic.  Wants to convince Victor.

Peggy creates isomorphic graph H.  

Victor sends challenge bit. If 0, Peggy shows isomorphism to A.  Else to B. 

Repeat n rounds 











Isogeny-based ID scheme

Original de Feo/Jao/Plut SIDH paper had identification scheme

Secret Key: SS curve E, with torsion point S defining isogeny 

Public: The curves .  Generators  of , and 



ID protocol:  

	1)  Peggy chooses random  and computes diagram.  

	Sends  and  to Victor.

	2)  Victor sends random bit to Peggy

	3)  If b=0, Peggy reveals  and .  Victor accepts if they

	have the right order and generate  and 

	4)  If b=1, Peggy reveals .  Victor accepts if it has the 

       right order and that it generates 





From SIDH to Signatures

Fiat-Shamir transform makes signature schemes from ID schemes

Idea:  make interactive protocol non-interactive by using random oracle to produce the challenges

Unruh transform – variant of Fiat-Shamir that provides security against quantum adversaries.

This work:  Full specification of how to do this in a smart way

Use optimizations on representing curves and isogeny chains

Secure under chosen message attack in Random Oracle Model

Efficiency

Secret key:  bits, Public Key:  bits           ()

Signature size: at least 6 bits

Both signing/verifying are  bits, where  is security parameter







A new isogeny-based ID Scheme

Motivation:  SIDH isogeny problem isn’t general

Let  be curve with for which End can be computed

Take random isogeny (walk in the graph) .  Using this knowledge, can compute End(.  

Public Info:          Secret:  End(

Protocol:  1) Prover computes random , and

    reveals  to Verifier.  

	2)  If verifier challenge = 0, reveal 

	3)  If challenge = 1, compute End(, and then 

	      ( is independent of )

	4)  Verifier accepts if isogeny is correct





Primes of special form, reveal auxiliary points, isogenies of low degree

Computing eta independent of E1 is non-trivial and works in the quaternion algebra.

Lots of technical details.
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Technical details	

If  then prover does:

Compute End and translate the isogeny path from  to  into a corresponding ideal I giving the path in the quaternion algebra

Use the powersmooth version of the quaternion -isogeny algorithm to compute another path between End and End, which is independent of , represented by an ideal J

Translate the ideal J to an isogeny path  from to 



I’ll skip the very detailed technical stuff about how to do the computations involved in the Deuring correspondence





Kohel/Lauter/Petit/Tignol algorithm is the quaternion version of SS l-isogeny path problem:

Given E0, E1 and small l, find an l-power isogeny E0->E1.  

The isogeny version is basis for isogeny hash function 

(need to be able compute End(E) to use alg to break hash)
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The Signature Scheme

KeyGen:  

Given security parameter , choose  of size bits.  Fix  as small as possible s.t. 



Perform random isogeny of degree  from  (with  to curve  with .  

Compute  and ideal I corresponding to .

Public Key: , where H is a hash function

Secret key:  





Fiat-Shamir

58





The Signature Scheme

Signing

For each , generate a random isogeny  of degree  ending at 

j-invariant .  

Compute and parse as t challenge bits 

Use ID scheme:  For each , if , use the technique given to find 

If , set .

Signature is .

Verification

For each , use  to compute .  Check that .





Security 

SSIP:  Given two SS curves chosen uniformly at random, find an isogeny between them.



If SSIP is hard, the signature scheme is secure in ROM under a chosen message attack.



If SSIP is hard, then the signature scheme obtained from Unruh’s transformation is a secure signature scheme against quantum adversaries in the ROM.  





Efficiency

Best classical algorithm for computing End(E) is , hence can take 



				This Signature Scheme		SIDH Signature Scheme

		Security Parameter 				

		Signature size				

		Public Key size				

		Secret key size				

		Signing time				

		Verifying time				







Summary

SIDH

State-of-the-art implementation of SIDH

~ 3 x faster than previous work, constant-time

Parameters for 128 bits of quantum security/192 bits classical security

Public Key size: 4512 bits.  Private Key size: 384 bits

ECDH+SIDH hybrid: adding ECDH only adds about 15% in time/memory



Security of SS isogeny crypto

Active attack against static key variant of SIDH

Hardness of computing End(E) is necessary for security

Bit security for computing j(E)



SS isogeny signature schemes

2 signature schemes which rely on supersingular isogenies

Second scheme based on more general problem, computing End(E)
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* Elliptic curves: E:y2 =x3+ax+b
3

* J-invariant j(E) = 1728m
* Asagroup, E(Fy) = Zy, X Zy, with m|n
* Over a finite field, #E(F,) = q + 1 —t, with [t| < 2,/q

* If t = 0 mod p, then E is supersingular, otherwise E is ordinary
* If End(E) is an order in a quaternion algebra, then E is supersingular
* If End(E) is an order in an imaginary quadratic field, then E is ordinary

* Curves in these papers have #E(Isz) = (p £+ 1)?, so E is supersingular
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* Isogeny — (nonconstant) rational homomorphism from E — E’
* Examples

« mE(F,) - E(F,), n(x,y) - (xP,yP)
. q)n:E - E, qon(P) = [Tl]P

* Tate’s Theorem: E and E’ are isogenous over [, iff #E(F,) = #E'(F,)

* [sogenous curves form equivalence relation (quotient out by
isomorphism classes)
* Curves in same isogeny class are all supersingular, or all ordinary
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* An £-isogeny is a (separable) isogeny whose kernel has cardinality

* For every subgroup F of order £, E has an £-isogeny with kernel F
* Given the kernel, can write the isogeny using Velu’s formula

* Each ¢-isogeny @: E — E' has a dual ¢-isogeny §: E' - E
* The composition @ . = [£], the multiplication by £ map

* Every isogeny (with degree >1) can be factored into a composition of
prime degree isogenies over [,

* There is a polynomial ®,(X,Y) such that £ and E’ are £-isogenous iff
DG (E)J(ED) =0
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Let E be an elliptic curve with finite subgroup F.
Then there is an isogeny ¢ from E, with kernel F.

FOI’P = (xp,yp)$ F, Iet

Recall, if |F| = /, then ¢ is an f-isogeny.
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* Let E be the curve y? = x3 —3915x + 113670.
» The points {(—21,+432),(51,+216), o} all have order 5.
* Then

p(x,y) =X,Y)

_ x5 — 60x* + 1350x3 + 1347300x2 — 82763775x + 1565892000

(x+21)2(x = 51)2
(x3 —225x2 + 12555x — 374355)(x3 + 135x2 + 14715x — 487755)

=y G+ 203 (x — 51)3

* The isogeny ¢ is a 5-isogeny to the curve
y? =x3 —16875x — 9956250.
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* Supersingular curves are all defined over Isz

* For every prime € t p, there exist £ + 1 isogenies of degree € from
supersingular E
* For ¢, there are £¢71(£ + 1) isogenies of degree £¢

« £-torsion of £, denoted E[£], is the set of all points of order £
(over [Fp)
* For supersingular E in these papers, E[¢¢] S E(F,2)

o E[£¢] = Zpe X Zpe,assuming £ t p
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* Anisogeny ¢: E — E is an endomorphism.
* Endomorphisms form a ring

* (@ +P)(P) = ¢(P) +Y(P), (p¥)(P) = p(Y(P))

* If E is ordinary, then End(E) is an order in an imaginary quadratic field
* i.e., there exists an isogeny ¢, with ¢p2(P) = [—d]|P

* If E is supersingular, then End(E) is an order in a quaternion algebra
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Given a,b we set

i2=a,j?=h,

ij =k, ji=—k

k% = ijij = —iijj = —ab
Elements are of the form a + Bi + 6j + vk
Hamiltonian quaternions area = b = —1
For these papers,a = —=1,b = —p
Under correspondence, (1,1, j, k) - (1 (j) T, o )
m(x, y) = (xp,yp)

working over the curve E(sz): y? = x3 + x, with p = 3mod 4
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* General Problem: Given two isogenous elliptic curves, construct an
isogeny between them (over finite fields)

* Ordinary curves

+ Galbraith/Stolbunov — classical 0(q/%)

* Childs/Jao/Soukharev — quantum subexponential Lq(%,‘/;) (needs GRH)
 Supersingular curves

+ Delfs/Galbraith — classical 0(q/?)
* Biasses/Jao/Sankar — quantum 0(q1/4)

* SIDH is not completely general — low/smooth degree
+ Claw problem — classical 0(q'/#), quantum 0(q'/®)
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. 1) Given prime p, l and SS curve E(F,2) chosen randomly F|nd curve
E’ (Fp2) and two isogenies ¢y, ¢, E - E' with degrees [¥1, [¥2

* 2) Given prime p, , and SS curves E, E' over F_» with #(E) = #(E )
chosen uniformly at random. Find isogeny ¢: % — E’ of degree [*.

* 3) SIDH:_ Let prime p = [;A1;F + 1. Ey(F,,2) is SS curve with bases {R;, S;}

for Eo[Ii']. Let ¢p: Ey — Elbe isogeny with kernel < mqR, +n.S, >, with
ml,nlchosen randomly. Given E; and ¢(Rg), (Sp) flndAgenerator of <
miR, + 1S, >, i.e. find ¢.

* 4) Decisional version of 3....
* 5) p prime, SS curve E(F,2) chosen randomly. Compute End(E).

* 6) p prime, SS curves E,E' over F,2 with #(E) = #(E") chosen uniformly
at random. Find isogeny ¢: E — ik
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* SIDH uses isogenies with exponentially large (but smooth) degree
* Compute them using composition of low-degree isogenies

* Fix two small primes €4, €5, then choose prime p = fflAngf +1

» Construct supersingular £ with #E (F,2) = (p £ 1)* = (fjAngf)z

* This paper proposes p = 23723239 — 1 with E:y? = x3 + x
* Use Fp2 = Fp (i), with i* = —1

* logp = 768 bits = 768/6=128 bits quantum security, 768/4=192 bits
classical security
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* Let Py, Q4 be generators of E[£34],
(and analogously for Pg, Qp)
* Alice’s private key:

. eA
* twointegersmy,ny t £,
* Isogeny @4: E = E,4 with kernel < my Py +1ny0Q4>

* Alice’s public key: E,, and ¢, (Pg), 94(Q5)
* (Bob does the analogous thing)
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* Let P4, Q4 be generators of E[£54],
and analogously for Pg, Qg

* Alice’s private key:
* twointegersmy, ny t €5
* Isogeny @4: E — E, with kernel < my Py +ny0Q 4>

* Alice’s public key: E4, and @4 (Pg), 94(Qp)
* (Bob does the analogous thing)

* Alice computes ¢'4: Eg = Eg4 with kernel < myu@p(Py) + ngpp(Qy) >
=< @p(MaPy + n4Q,4) >
=< ¢p (Ry) >

.... and Bob does similarly

* Egy = E p and the shared secret is j(E4g) = j(Ega)






image17.png

* Recall, need two independent points of order £¢
* Use base field and trace-zero torsion subgroups
* Base field: E[¢¢] € E(IF,), generated by <P>
s Let7(x,y) = (—x,iy), where i? = —1
e Trace-zero: Use < 7(P)>, which has order £¢, and is independent of P
. Tr(T(P)) =1(P) + Frob(‘[(P)) = (—x,iy) + (—x,—iy) =
* Only needs two FF,-elements to represent this, instead of four

* P, = [3239](z,Vz3 + z), for smallest z (which is 11), Q4 = ©(P,)
* Py = [2372](6,V63 + 6), Q5 = t(Pp)
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* Alice needs to choose my, ny so that myP, + nyQ4 has order £¢4

« She randomly chooses m’ € {1,2, ...,26471 — 1} and setsR, = P, +
[Zm']QA

* Easy proof shows it has full order
* Only reaches 1/3 of possible Ry

* Bob does the same, but with B’s instead of A’s and 3 instead of 2
* They then still need to compute their isogenies...
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* Let R be a point of order £¢. How to compute isogeny ¢ with kernel <R>?

s Example: E(F;,;) = y% =x3 + 114x + 79, #E = 128
R = E(34,29) has order 16
* Velu’s formula directly needs R,2R,....,15R, then 0(163) work
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Let R be a point of order £¢. How to compute isogeny ¢ with kernel <R>?

Example: E(F;,,) == y? = x3 4+ 114x + 79, #E = 128
R = E(34,29) has order 16
Velu’s formula directly needs R,2R,....,15R, then 0(163) work

Better: ¢pp = 3 0 ¢, © Py © Py, each ¢; is of degree 2, 0(23) work
* 2-isogeny: (0,0) on y? = x3 + Ax? + x

—1\2
(x,y) » 25y - %))
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* For ¢y, need 8R (which has order 2)
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8R,
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R1 = ¢o(Ro)
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2R,
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4R,
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* For ¢y, need 8R (which has order 2)
* For ¢4, need 4R; (which has order 2)






image38.png

Ry, = ¢1(Ry)
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2R,
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* For ¢y, need 8R (which has order 2)
* For ¢4, need 4R; (which has order 2)
* For ¢,, need 2R, (which has order 2)
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b2






image42.png

* For ¢y, need 8R (which has order 2)
* For ¢4, need 4R; (which has order 2)
* For ¢,, need 2R, (which has order 2)
* For ¢o3, need R (which has order 2)
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R3; = ¢,(Ry)
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* For ¢y, need 8R (which has order 2)
* For ¢4, need 4R; (which has order 2)
* For ¢,, need 2R, (which has order 2)
* For ¢o3, need R (which has order 2)

* Pr = P30 Py 0Py 0Py isdegree 16
with kernel < R >
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Ri = ¢o(Ro)
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4R,
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Ry = ¢1(Ry)
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R3 = ¢,(Ry)
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* Let R be a point of order #¢. How to compute isogeny ¢ with kernel
<R>?

«SetE, = E,Ry =R

* Ejyq = Ei/<£°77IR; >

* ¢iiE = Ejyq

* Riv1 = ¢i(Ry)

*ThenE/<R>=E,and ¢ = ¢pp_1 00 ¢y
* Need to know the bottom row of the graph

* Turns out a hybrid approach is best
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FIGURE 2. Computational structure of the construction of ¢ = @5 0--- 0

do-

Since the degree of ¢ is smooth, it is best to decompose it as a chain of f-isogenies. Set Ey = E, Ry = R
and, for 0 <i <e, let
Eip=E/(t"7'R),  ¢:i:Ei = Eipi, R = 6i(R)).
Then E/(R) = E. and 6 = ¢e_y 0--- 0 do.
The curve E and the isogeny ¢; can be computed using Vélu's formulas [48], once the £-torsion subgroup
(R:) of E; is known. This immediately suggests two strategies having quadratic complexity in e, as described
in [19].

However, we can do much better. Figure 2 summarizes the computational structure of the problem for
& D i
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* Projective coordinates for points and curve coefficients
* Avoid inversions — only 3 total needed
* Montgomery curve Eg p: by? = x3 + ax? + x
Egpc:By? = Cx® + Ax* + Cx
* Use the Kummer variety
* Work with x: Eg ,/(+1) » P!, (X:Y: Z) - (X: Z)
* Efficient algorithms for xADD: (x(P),x(Q),x(P — Q)) - x(P + Q), xDBL,
xDBLADD, LADDER, xTPL, etc.... that only depend on x’s and coefficient a
* Efficient projective 3-isogeny, 4-isogeny formulas

* Efficient field arithmetic, modular reductions, etc...
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* 3.4 GHz Intel Core i7-2600 Sandy Bridge and 3.4GHz Intel Core i7-
4770 Haswell processors

* Measured in millions of
clock cycles

* Prior work wasn’t
constant time

* For comparison, prior work has their key exchange on 2.4 GHz Intel
Core i5 taking .22 seconds, so now maybe =0.07 seconds?
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“This work

Prior work [2]

Operation Sandy Sandy
g | Fswell | g | Hawel
Alice's keygen 50 3 6 )
Bob’s keygen 58 54 172 152
Alice's shared key a a 133 18
Bob’s shared key 56 52 137 122
Total o1 196 608 510
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./openssl speed

AWS c4.1arge (Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz)

Scheme Alice 0 Bob  Alice1 Communication Security

A—B B—A | Class. PQ.
(ms) (oytes) (bits)

SIDH 156.84 3514 1497 564 564 192 128

McBits 69.92 0.04 0.15 311,736 109 157 157

LWE

Frodo 0.91 1.33 0.16 11,377 11,296 144 130

Ring-LWE

BCNS15 0.72 117 0.16 4,096 4,224 86 78

NewHope 0.05 0.08 0.02 1,824 2,048 281 255

NewHope- 1,824 2,176

Simple

Module-LWE

Kyber 0.06 0.08 0.09 1,088 1,152 178 161







image71.png

* Could partner SIDH with any DH scheme, but obvious advantages from
sharing the SIDH implementation

* Use same field [F,,, with p = 23723239 —1

* Choose ordinary, rigid, twist-secure curve E': y2 = x3 + ax + x, with
a = 624450

* Both E’ and it’s twist have order 4 times a 749 bit prime

* About a 15% penalty in time/memory
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Standalone Tybrid
comparsen SIDH SIDH+ECDH
= bitsccurity Classical 102 (SSDDH) | 384 (ECDHP)
(hard problem) PQ 135 (SSDDH) | 128 (SSDDH)
public key size T 561 T = ]
“Alice’s keygen i B
speed Bob's keygen 51 60
(cc x10°) Alice’s shared key 4 50
Bob's shared key 52 58
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* De Feo/Jao/Plut proved SIDH is session-key secure in the
authenticated-links adversarial model of Canetti and Krawczyk

* Assumes perfectly authenticated links, which basically forces the adversaries
to be passive eavesdroppers

* This can be okay for ephemeral use, but not for real-world use (where static
private keys are reused)

e SSDDH: Differentiate between

(Ea, Eg, $a(Pg), 04(Qp), 5 (Ps), Pp(Q4), Esp), Where
Eap = Ey/(myPy + nyQ4, mpPp + ngQp)

Where the my4,ny, mg, ng are actual parameters or chosen randomly
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* |f SIDH private keys are reused, then public key validation is necessary

* See Failure is not an option: Standardization issues for Post-Quantum key
agreement, which described “indirect validation”

* Public key validation for ECC easy — check a point is on correct curve

* For SIDH, to validate:
* need to check points P and Q have order ¢ on the same curve E’,
* Check E’ is isogenous to public curve E,
* Check that Q # kP
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* Check Q #+ kP
* Compute Weil pairing e(P, Q) — check it’s order
* Check P, Q have the right order
* Checking point’s order only involves doubling or tripling

* Check the curves E, E’ are isogenous
* Tate’s Theorem: check E, E’ have the same # of points

* Avoid need to select random point (and hence square root) by using fact that a point
with given x-coordinate is on the curve or its twist,

* Then check that point’s order (either (p + 1)% or (p — 1)?)

* Cost of validation: = 40% of (KeyGen + SharedSecret) runtime
* Original version was around = 130% of runtime
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* If using static keys, attacker could do small subgroup/invalid curve
type active attack on SIDH — hence need public key validation

* Alice’s private key is (my4,n,). Bob sends (E, P, Q) and Alice
computes isogeny ¢: E - E' with kernel < myP +n,Q >
* Alice should check what Bob sends, how SIDH paper described
* Can do partial validation (NSA talk at NIST PQC workshop). Perform key
exchange and then each party encrypts randomness used and sends to the
other party. But this reveals Bob’s key to Alice
* Key Fact: There is an equivalent key of form (1, a) or (a, 1)

* They generate the same subgroup < myP, +nyQ,4 >
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* Oracle: Bob sends (E, P, Q) and Alice returns E’, where isogeny ¢: E — E’
has kernel < myP + ny,Q >

* Differentiate between (1, a) or (a', 1)
e Canassume ' is even

* Attacker generates ephemeral values (EB,R = pp(Py),S = ¢>B(QA)) and follows
protocol to get resulting key j(E4g)

* Attacker sends (Eg, R + [2"71]S, S) to Alice and checks if j = j(E4g)
* If so, the isomorphismimplies < [m4](R + [2"71]S) + [n4]S >=< [m4]R + [n4]S >, but
this is true iff my is even
* Is a even or odd?
* Similarly test (Eg,R,S + [2"1]R) to see if n, is even

* Note: These queries pass SIDH validation checks
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* Assumption: the key is (1, @), and we know one bit a of «
a=ay+a;2t +- 4+ a, 2"t
* How to learn one more bit:
* Attacker queries (Eg, R — [2™"2a,]S, [1 + 2™72]S)
* If same j then a; = 0, otherwise a; =1

* They continue in an iterative fashion to learn all but the last 2 bits, in
a way that passes validation.

* Wouldn’t pass “indirect validation” technique
* (They can generalize the attack for when [ # 2)
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* Recall that if we can compute isogenies between E and E’, we can
compute End(E).

* Also, heuristically the converse is true: If can compute endomorphism
rings, we can find isogenies between two curves.

* But what about the degree? SIDH isogenies have small degree O(pl/z)

* Galbraith shows how if can compute endomorphism rings of SIDH curves,
then can compute the SIDH isogenies

* Key is knowing what the degree needs to be (which is small)

* Thus, for SIDH, necessary to assume computing End(E) is hard
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Bit security of j(E4g)
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* Does knowing one (or a few) bits of j(E,5) help an attacker?
 Similar to results “hardcore bits” for DH in Z;;, and for DSA and ECDSA

* We have j = j; +j,0, where F,2 = F,(0)

* Modular polynomials ¥,.(x, y): There is a degree risogeny ¢: E — E’
|fand only if ¥ (](E) ](E )3,

- grows crazy fast —only need r = 2 3
. Substituting in known values of j, reduces to recovering roots
* Computing j; or j, is as hard as computing j
* If know partial components, can use lattice methods to possibly recover j
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Modular Polynomials W,.(x, y)
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+ 8 more pages + ...
+ 392423345094527654908696 .... (100 digits omitted)....000

+ W, takes 100MB to store coefficients.
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* Previous signatures schemes based on isogenies:
* (interactive) undeniable signature scheme
* Designated verifier signature (for only one verifier)

* This work:

* Signature scheme based on SIDH

1/4) 1/6)

* Best classical attack is O(p

* New signature scheme based on hardness of computing End(E)
1/2 1/4

), quantum attack is O(p

* Best classical attack is O (p'/?), quantum attack is O (p
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* Let p = 5 be prime. The number of supersingular j-invariants in char. p is
N, = E + €,, where €, € {0,1,2} depending on p mod 12.

* Create l-isogeny graph, where vertices are j-invariants, and edges
correspond to degree [ isogenies
* For ordinary curves, these are “volcanoes”
* For supersingular curves, graphs are (I + 1)-regular
* Isogeny graphs are (optimal) expander graphs:
* Take a random walk with degrees [;.

Quickly converges to uniform distribution
* We keep the same vertices, but edges change as [ changes
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* Working over F 2, elements take 2Iog(p) bits

* The curve E: y? = x3 + 25— % T T2 has j(E) = j, forj#0,1728

+j=0:y?2=x3+1andj=1728: y? =x3 +x
* Isogeny chains: ¢;: E;_; — E;, of prime degree [;. Cantake [; > [;_;
* To send degrees, send N =[]~ [;, computable since [; small
* To send curves, could send each j;. Takes 2(n + 1) logp bits
Verifier checks Wy, (j;_4, j;) for correctness

* Or could send x-coordinate of kernel point P; € Ej,. Use Velu to compute

¢l 11_>E

* In SIDH setup, I; = [, and the point R + [«]S determines all the kernels. Just
send a which is n bits (as | = 2)
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* Just send every other j-invariant. Then compute
ged(Wy, Gi-1,¥), Yie1 (0, i 1))
to recover the missing ones.

* Alternatively, just send only least significant log(l; + 1) bits of the j;. Verifier
finds roots of Wy, (j;—1,y) and chooses the right one.

* Compression: Order elements of F,z, and send index k for the right root j; of
W;,(ji—1,¥)- Send all the k using integer base [[}=;(I; + 1)
* In SIDH setting, [; = 2, and this is just n bits

* Could also well-order points/subgroups rather than j-invariants...

« Efficiency of isogeny step: 0 (log?® p) for 2" scheme, O (logp) for 15t scheme
(SIDH-based)
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* Original de Feo/Jao/Plut SIDH paper had identification scheme
* Secret Key: SS curve E, with lflA —torsion point S defining isogeny ¢: E - E/< S >
* Public: The curves E, E/< S >. Generators P, Q of E[I;F], and ¢(P), $(Q)

* |D protocol:
1) Peggy chooses random R = a4 P + a,Q and computes diagram.
Sends E /(R) and E /(S, R) to Victor.
2) Victor sends random bit to Peggy
3) If b=0, Peggy reveals R and ¢'(R). Victor accepts if they
have the right order and generate ¥ and i’
4) If b=1, Peggy reveals (S). Victor accepts if it has the
right order and that it generates ¢’
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* Fiat-Shamir transform makes signature schemes from ID schemes

* Idea: make interactive protocol non-interactive by using random oracle to produce
the challenges

* Unruh transform —variant of Fiat-Shamir that provides security against quantum
adversaries.
* This work: Full specification of how to do this in a smart way
* Use optimizations on representing curves and isogeny chains
* Secure under chosen message attack in Random Oracle Model

* Efficiency
* Secret key: 2 log p bits, Public Key: 13 log p bits (logp = 4 1)
* Signature size: at least 612 bits
* Both signing/verifying are 0(43) bits, where 1 is security parameter
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* Motivation: SIDH isogeny problem isn’t general
* Let E, be curve with for which End(E,) can be computed

* Take random isogeny (walk in the graph) ¢: E; — E;. Using this
knowledge, can compute End(E;).
* PublicInfo: (Egy, Eq) Secret: End(E;)

* Protocol: 1) Prover computes random y: E; — E,, and
reveals E, to Verifier.
2) If verifier challenge =0, reveal
3) If challenge =1, compute End(E,), and then
(n is independent of E;)
4) Verifier accepts if isogeny is correct
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* If b = 1, then prover does:

» Compute End(E,) and translate the isogeny path from Ej to E, into a
corresponding ideal / giving the path in the quaternion algebra

* Use the powersmooth version of the quaternion [-isogeny algorithm to
compute another path between End(Ej) and End(E;), which is independent
of E;, represented by an ideal J

* Translate the ideal J to an isogeny path n from E, to E,

* |'ll skip the very detailed technical stuff about how to do the
computations involved in the Deuring correspondence






image87.png

* KeyGen:

* Given security parameter A, choose p = 3 mod 4 of size 24 bits. Fix B, 54, S>
as small as possible s.t.

€L
L 20\
S = lef‘i",lz‘i < B,gcd(S,,S,) = 1,and H(lk- :;) < 72/p?
i L

Perform random isogeny ¢ of degree S; from E, (with j(Ey) = 1728) to
curve E; with j(E;) = j;.

Compute 04 = End(E;) and ideal / corresponding to ¢.

Public Key: (p, jo, j1, H), where H is a hash function

Secret key: (Ey, E1,04,1)
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* Signing
* Foreachi =1, ..., t, generate a random isogeny 1); of degree S, ending at
J-invariant j ;.
* Compute h = H(M,jz,l, ...,jz,t), and parse as t challenge bits b;.
* Use ID scheme: For each i, if b; = 1, use the technique given to find z; = 7;.
If b; =0, set z; = ;.
* Signatureis g = (h, zq, ..., Z¢).
* Verification
* For each i, use z; to compute E, ;. Checkthath = H(M, jy1, ..., jz,)-
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* Best classical algorithm for computing End(E) is O (y/p), hence can
take logp = 24.
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_ This Signature Scheme SIDH Signature Scheme

Security Parameter A A=(1/2)logp A=(1/4)logp
Signature size 1542 = (15/4)log? p 612 = (3/2)log?p
Public Key size 61 =3logp 521 =13logp
Secret key size 21 =logp 81 =2logp
Signing time 0(2%) 0%

Verifying time 02> 0(2%)








Effcient algorithms for supersingular
isogeny Diffie-Hellman (SIDH)





