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From: crypto-club-bounces@nist.gov [mailto:crypto-club-bounces@nist.gov] On Behalf Of Sonmez
Turan, Meltem (Assoc)
Sent: Tuesday, June 07, 2016 12:06 PM
To: CRYPTO-CLUB <CRYPTO-CLUB@nist.gov>
Subject: [Crypto-club] Reminder: Crypto Reading Club - June 8
Hi everyone,
I would like to remind you that tomorrow Ray Perlner is giving a talk titled “Key Recovery Attack on
the Cubic ABC Simple Matrix Multivariate Encryption Scheme”.

Date: June 8th, 2016
Place: Building 222 B341
Time : 10:00AM-12:00PM
Regards,
Meltem

From: crypto-club-bounces@nist.gov [mailto:crypto-club-bounces@nist.gov] On Behalf Of Sonmez
Turan, Meltem (Assoc)
Sent: Thursday, June 2, 2016 1:31 PM
To: CRYPTO-CLUB <CRYPTO-CLUB@nist.gov>
Subject: [Crypto-club] Crypto Reading Club - June 8
Hi everyone,

Our next crypto reading club is scheduled on June 8th. Ray Perlner is giving a talk titled “Key
Recovery Attack on the Cubic ABC Simple Matrix Multivariate Encryption Scheme”.
Abstract: In the last few years multivariate public key cryptography has experienced an infusion of
new ideas for encryption. Among these new strategies is the ABC Simple Matrix family of encryption
schemes which utilize the structure of a large matrix algebra to construct effectively invertible
systems of nonlinear equations hidden by an isomorphism of polynomials. The cubic version of the
ABC Simple Matrix Encryption was developed with provable security in mind and was published
including a heuristic security argument claiming that an attack on the scheme should be at least as
difficult as solving a random system of quadratic equations over a finite field. In this work, we prove
that these claims are erroneous. We present a complete key recovery attack breaking full sized
instances of the scheme. Interestingly, the same attack applies to the quadratic version of ABC, but
is far less efficient; thus, the enhanced security scheme is less secure than the original.

Date: June 8th, 2016
Place: Building 222 B341
Time : 10:00AM-12:00PM
Regards,
Meltem
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Key Recovery Attack on The Cubic ABC Simple-Matrix Encryption Scheme

Dustin Moody, Ray Perlner, Daniel Smith-Tone
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Multivariate cryptography

Public key is a system of  polynomial equations in  varibles over 

E.g.





Plaintext is given by  and ciphertext is given by .

Solving multivariate systems of equations is NP hard in general for polynomials of degree 2 or higher.

Most schemes use degree 2 polynomials; we will be considering a degree 3 scheme.

Private key is some special structure that allows the private-key holder to solve for .

Most known schemes only produce secure signatures; we will be considering an encryption scheme.





Multivariate Cryptography 2
The Butterfly Construction

In most multivariate schemes (Cubic ABC included) the public key is constructed as:



 is an easily invertible Quadratic/Cubic function

 and  are affine maps

E.g.





Singular maps are sometimes used for signatures. Here we use invertible maps.





Cubic ABC: The Core Map

Central map is  function where the equations are grouped as the elements of two matrices 



, are linear functions of .

 are quadratic functions of .







Decryption proceeds by solving:

 

  



for  and . (Linear)









Special Structure: Band Spaces

Consider the  equations in column  of 







Under a basis  where :

All cubic monomials contain at least one factor of 

We will call these  equations (and their linear combination) band-space maps

We will also define the band kernel: The space of vectors , such that







How many band spaces are there:

Not only do the columns of  and  define band spaces, but fixed linear combinations of the columns  do as well.

Band Space:











Band Kernel:

     ()









A Formal Tool for Describing the Structure:
The Discrete Differential

Definition: 

We will be considering the structure of cubic monomials, so we will use 

Useful properties

Its entries are the coefficients of cubic monomials in 









 is a 3-tensor: i.e for linear maps/ changes of basis :







Or equivalently:







The (2nd) Differential Form of Band-Space Maps







Some properties of band-space differentials.
(in the  basis)

For three vectors :





For two vectors :



Note that  maps  to an -dimensional subspace of linear forms



For one vector :





Note that the rank of the resulting 2-tensor (matrix) is at most .

But the components of the public key aren’t band-space maps, but linear combinations of them, under the private transformation , since 





Our attack strategy
(Modified MinRank)

Select -dimensional vectors, .



Solve 







For . 



Hope that  and 



If so, the 2-tensor  will have rank at most .





Setting some vectors equal

We can increase the probability that the vectors share a band kernel by setting some of them equal to one another (e.g. by solving:)







This works in odd characteristic, but in characteristic 2,  by symmetry. So the best we can do there is:















How likely are random vectors to share a band kernel?

 , … share a band kernel if there is a nontrivial linear relation on the columns of the matrix at right:



If all four vectors are randomly chosen it’s a random  

Probability is 

If we set a pair of vectors equal            (e.g. ) it’s a random  

Probability is 

If we set two pairs  of vectors equal     (e.g. ; )                              it’s a random  

Probability is 







If the vectors share a band kernel, how likely are we to find a band-space map?

We find a band space map if there exists nonzero  such that:







Recall that maps band kernel vectors to an -dimensional space of linear forms.

Thus we have  (random) linear constrains on  variables

The probability that there is a nontrivial solution is 







How big a space of solutions do we have to search through

Even if a low rank solution exists to







it isn’t necessarily the only one.

Generically we’d expect a 0 dimensional solution space ( equations in  variables.) However, low characteristic imposes some linear dependencies:

Characteristic 2 



And if =:  0



So we expect a 5 dimensional solution space which requires  rank computations to search.



Characteristic 3 (; )





So we expect a 2 dimensional solution space which requires  rank computations to search.





Putting it all together

Finding a band-space map costs approximately

 for characteristic 2.

 for characteristic 3.

 for higher characteristic.

( is the linear algebra constant.)



Once a band space map is found, a full key recovery is possible at minimal additional cost (see next few slides.)







Key Recovery: Overall Strategy

Find an equivalent private key. i.e. , , ,  such that



Note that  is unnecessary, since  is still a random quadratic polynomial in  and  and  are still random linear polynomials.

Multistep process starting with a single band space map and two band kernel vectors:

Solve for the whole band kernel.

Solve for the whole band space.

Solve for a column of : .



Solve for  (mod ).

Solve for  and  (mod )  and .

Select another column of  (mod ) and solve for the corresponding band space.



Solve for the band kernel corresponding to the band space in step 6.

Solve for the rest of .

Solve for the rest of  and 





Key Recovery Step 1: 
Solving for the whole band kernel.

Once we’ve found a band-space map  and at least two vectors from the band kernel, we can find the whole band kernel by taking the span of the union of the kernels of  and 

This works because, in a basis including generators of the band kernel 



With high probability each kernel contains  basis vectors of the      -dimensional band kernel, and the union contains a full basis.





Key Recovery Step 2: 
Solving for the whole band space

The band space maps  are simply the maps in the span of the public equations  such that







 Call a basis of this space 





Key Recovery Step 3:
Solving for the space of linear forms in 
(This can be our first column of B’)

These are simply the space of linear forms  such that  





Call a basis of this space 





Key Recovery Step 4:
Solving for  (mod )

 and  are related to  and   by simple row operations:





Therefore  is a solution of



However, the solution is only unique over polynomials modulo 

This is because we can get cancellations like 





Key Recovery Step 5:
Solving for  and   and 

We can solve linear equations for , , and  (mod )







The solution  is (with high probability) unique up to column operations on 

i.e. any solution will generate a valid private key.

Note that the coefficients of  are scalars, not polynomials, so  does not affect  

We now have our .







Key Recovery Step 6:
Solving for another Band Space
 (corresponding to another column of  (mod ))



Select a column  of  (mod )



We can find the band space maps corresponding to this column of  by taking the corresponding column  of 

Note these band space maps are completely known (no mod )!





Key Recovery Step 7:
Solving for the Band Kernel
(For the Band Space we found in Step 6)

We can solve for the intersection of our two band kernels as follows:

The intersection is the set of vectors  such that:





Now we have (more than 1) equations in the second band space, and (more than 2) elements of the band kernel, so we can do what we did the last time:

Take the span of the union of the kernels of  and  for  and  in the band kernel of .





Key Recovery Step 8:
Solving for the Rest of 

With high probability  is fixed by

  (mod )

The condition that for any  in the band kernel of 



  fixes  (mod )



 fixes  (mod )



Together the two equations fix  entirely. (assuming  are linearly independent – high probability and easy to check.)









Key Recovery Step 9:
Solving for the rest of  and 

Same equation as before without the (mod )









How bad is the attack

Recall:

Finding a band-space map costs approximately

 for characteristic 2.

 for characteristic 3.

 for higher characteristic.

	( is the linear algebra constant.)

Once a band space map is found, a full key recovery is possible at minimal additional cost.

A little background

The motivation for the cubic ABC scheme was to improve the provable security of the original quadratic ABC scheme (same, but the polynomials in  are linear)

We did a similar analysis of quadratic ABC:

 for characteristic 2.

 for higher characteristic.

Cubic ABC does not eliminate structural attacks

The proposed parameters are still ok (since they used characteristic 2)

However, our attack breaks odd characteristic versions of cubic ABC that previously published analysis says should be secure.





Thank You!
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* Public key is a system of m polynomial equations in n varibles over F,
E.g.
yi=2x3 +x8x, + x5+ 3%+ x, +1
Vo = 2x2x5 4+ 3x1X5 + x1%5 + 4x4

* Plaintext is given by x; and ciphertext is given by y;.

* Solving multivariate systems of equations is NP hard in general for
polynomials of degree 2 or higher.
* Most schemes use degree 2 polynomials; we will be considering a degree 3 scheme.

* Private key is some special structure that allows the private-key holder to
solve for x;.

* Most known schemes only produce secure signatures; we will be considering an
encryption scheme.
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* In most multivariate schemes (Cubic ABC included) the public key is

constructed as:
foun(X) =T o f o U(x)

* fis an easily invertible Quadratic/Cubic function

* T and U are affine maps

* Eg.
U= x4 +3x,+4
Uy = 3x1+2x, +1
* Singular maps are sometimes used for signatures. Here we use invertible maps.
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two matrices f(X) = (E; (%), E; (%)
* E,=AB; E, = AC
* b;,c; are linear functions of X.
* p; are quadratic functions of X.

* Central map is s? = 252 function waere the equations are grouped as the elements of

* Decryption proceeds by solving:
(A(X)"'Ey = B(X)
(A(X)'E; = C(X)

for (A(X¥))~! and X. (Linear)
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* Consider the s equations in column j of E; = AB

S
Ei-1s+j = z Pi-1)s+1(X)b-1)s+; (%)
=1

* Undera basis (u'y, ...u's2) where (u'y, ...u's) = (bj(X), bsy j(¥) ... bsz_54;(X)):

* All cubic monomials contain at least one factor of (u'y, ...u's)
* We will call these s equations (and their linear combination) band-space maps

« We will also define the band kernel: The space of vectors X, such that
(u’l(ic’), (X)) =0
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* Not only do the columns of E; = AB and E, = AC define band spaces, but fixed
linear combinations of the columns (B,7) do as well.
* Band Space:

e Band Kernel:
(x € BKp,)
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+ Definition: Df (%,d) = f(X + d) — f(X) — f(@) + f(ﬁ)
+ We will be considering the structure of cubic monomials, so we will use D?f(d, b, %)

* Useful properties
* lts entries are the coefficients of cubic monomials in f

f&@ = Z QXXX
isj=k
> D2(AB,%) = ) (0 Nijecibyxe;

isjsk
aje i#Fj*k

D* e =4 2aije i=j#*k
6ay, i=j=k

. sz is a 3-tensor: i.e for linear maps/ changes of basis U:
f@®=fUd
= D2f'(d,b,x) = D*f(U4,U b,U%)
Or equivalently:

O = Y. O imnVisls U

Lmn
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Some properties of band-space differentials.
(in the u'; basis)
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For three vectors xq, X5, x3 € BHp
nglg’y(xl,xZ,x?,) =0

For two vectors xq,x, € BKp ,:
D%Eg, (x1,%3) = (y(u'q), ..., y(W's),0, ..., 0)

* Note that ngﬁ,y maps x4, X, to an s-dimensional subspace of linear forms
For one vector x; € BXp :
’ S - R -
2 _
D g[i’,y(xl) |\ RT 0

* Note that the rank of the resulting 2-tensor (matrix) is at most 2s.

But the components of the public key aren’t band-space maps, but linear combinations of them, under the
private transformation 7", since fp,(x) = T o f o U(x)
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* Select s2-dimensional vectors, x;, X, X3, X4.

* Solve
252

Z t;D?E; (x1,%) =0

i=1

25?2

Z t;D?E; (x3,%4) = 0
i=1
For t;.

* Hopethat Y% t;D2€; € By, and xq, X2, X3,X4 € BKp,

¢ |If so, the 2-tensor Zizizl t;D?E; (x;) will have rank at most 2s.
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* We can increase the probability that the vectors share a band kernel by setting some of them equal to one
another (e.g. by solving:)

25?2

Z t;D?E; (x1,x,) =0

i=1
25?2
Z t;D?E; (x,%5) = 0
i=1

* This works in odd characteristic, but in charactezristic 2, D%E;(x4,%,) = 0 by symmetry. So the best we can do there is:

2s
Z t;D?€; (x1,%2) =0
i=1
252

Z tingi (xl,x3) =0

i=1
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X1, X7, ... share a band kernel if there is a
nontrivial linear relation on the columns
of the matrix at right:

If all four vectors are randomly chosen it’s
arandom 4s X 2s

. ility is ~—— g~25
Probability is puri]
If we set a pair of vectors equal
(e.g. x4 = x1) it'sarandom 3s X 2s
. ity is ~— g—S
Probability is puri]
If we set two pairs of vectors equal

(.8 X1 = Xp; X3 = X4)
it’s a random 2s X 2s

e . 1
Probability is ~ o
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* We find a band space map if there exists nonzero (74, ..., T) such that:

Z Tingﬁ,y,i (xl,xz) =0
i=1

N

Z Tingﬁ,y,i (Xg, X4_) =0

i=1
* Recall that};}_, 7;D%Ep,,; maps band kernel vectors to an s-dimensional
space of linear forms.
* Thus we have 2s (random) linear constrains on s \{ariables
* The probability that there is a nontrivial solution is ~Eq‘5
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* Even if a low rank solution exists to )
25

D D% () =0

i=1

252

D D% (s x) = 0,

=1
it isn’t necessarily the only one.

* Generically we’d expect a 0 dimensional solution space (252 equations in 2s2 variables.) However, low characteristic imposes
some linear dependencies:
* Characteristic 2

2 2 2 2
. 2?51 t;D%E; (leiz)(xl) = Z?L t;D?E; (le;fz)(xz) = 2&1 t;D?E; (x3,%4)(x3) = Zfil t:D%€; (x3,%) (x4) = 0
© Andifx,=xp: Y2 6D2E; (31, %,) (x3) + X255 t;D2E; (%1, %3) (x,) = 0

*  So we expect a 5 dimensional solution space which requires g* + ¢® + g2 + q + 1 rank computations to search.

¢ Characteristic 3 (x; = X5; X3 = X4)
.« X GD2E (1,2 () = X2 D28, (5, %) (x,) = 0

* So we expect a 2 dimensional solution space which requires g + 1 rank computations to search.
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* Finding a band-space map costs approximately
 q2?5t652% for characteristic 2.
* q5*352% for characteristic 3.
 q5*252% for higher characteristic.
(w = 2.373is the linear algebra constant.)

* Once a band space map is found, a full key recovery is possible at
minimal additional cost (see next few slides.)






image20.png

* Find an equivalent private key. i.e. 7', A’, B', C' such that
T"o (A'(X)B'(x), A/ (x)C' (%)) = Epyp (%)

* Note that U’ is unnecessary, since p('u’(x)P is still a random quadratic polynomial in x and b(’u’(x)) and
c('u’(x)) are still random linear polynomials.

* Multistep process starting with a single band space map and two band kernel vectors:
1.  Solve for the whole band kernel.

2. Solve for the whole band space.
3. Solve for a column of B”: (vy, ..., v5)T.

4.  Solve for A" (mod vy, ..., vs).
Solve for B’ and €’ (mod vy, ..., v5) and T".
6. Select another column of B’ (mod v4, ..., ¥5) and solve for the corresponding band space.

bl

~

Solve for the band kernel corresponding to the band space in step 6.
Solve for the rest of A’.
9. Solve for the rest of B’ and C’

%
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* Once we’ve found a band-space map &g ,, and at least two vectors
from the band kernel, we can find the whole band kernel by taking
the span of the union of the kernels of D*Eg,(x;) and D*Eg, (x,)

* This works because, in a basis including generatﬁrs of the band kernel
k - kK

|
R,T 0
|

* With high probability each kernel contains s — 2s basis vectors of the
(s?2—s)-dimensional band kernel, and the union contains a full basis.

ngﬁ,y (xk) =
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* The band space maps &g, are simply the maps in the span of the
public equations &; such that
D?&g,, (x1,%2,%3) = 0
Vx1, %, %3 € BKp,,

* Call a basis of this space (Eﬁ,y,l, ...,Eﬁ,y,s)
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Key Recovery Step 3:
Solving for the space of linear forms in Bf + Cy
(This can be our first column of B)
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* These are simply the space of linear forms v such that
v(x) =0
Vx € B:}Cﬁﬂf

* Call a basis of this space (v, ..., V5)
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Key Recovery Step 4:
Solving for A" (mod vy, ..., V)
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* A(BfS + Cy) and BfS + Cy are related to (g 1, ..., EB,V,S)T and (vy, ..., v5)T by simple
row operations:

‘9/3.7.1
* A(BB+Cy)=Q :

‘9/3.7.5

V1
. Bﬁ+Cy=QZ<5 )
vS
« Therefore A’ = 1, "*AQ, is a solution of
(%1 g/?,y,l
A’( > =
Us EBy.s

* However, the solution is only unique over polynomials modulo vy, ..., v
* Thisis because we can get cancellations like p,vq + p,v, = (p1+uv,) vy + (pa—uvy)v,
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Key Recovery Step 5:
Solving for B" and C' (mod vy, ..., v5) and g1
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* We can solve linear equations for B', C’, and 71 (mod vy, ..., vg)
(A'B',A'C") = T'"" o Epyp (Mod vy, ..., )

* The solution (mod vy, ..., vg) is (with high probability) unique up to
column operations on (B',C")
* i.e. any solution will generate a valid private key.

« Note that the coefficients of 7'~ " are scalars, not polynomials, so
(mod vy, ..., v5) does not affect T’
* We now have our T'.
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Key Recovery Step 6:
Solving for another Band Space
(corresponding to another column of B’ (mod vy, ..., vg))
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* Select a column (Vg4 1, ..., V)T of B' (mod vy, ..., )

* We can find the band space maps corresponding to this column of B’
by taking the corresponding column (Fs 1, ..., Fo5)T of 7' 1o Epub
* Note these band space maps are completely known (no mod vy, ..., vs)!
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* We can solve for the intersection of our two band kernels as follows:

* The intersection is the set of vectors x such that:

(v5+1(x), . sz(x))(mod v (x), ...,vs(x)) =0
(v1(x), ., vs(x)) = 0
* Now we have (more than 1) equations in the second band space, and
(more than 2) elements of the band kernel, so we can do what we did
the last time:

* Take the span of the union of the kernels of D?F,, ;x; and D?F,x, for x;
and x, in the band kernel of (Fs;1, ..., F2s)-
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Key Recovery Step 8:
Solving for the Rest of A’






image33.png

With high probability (Vs1, ..., v25) is fixed by
(Vss1y ooer V25)T (Mod vy, ..., V)
* The condition that (vs+1(x), ) sz(x)) = 0 for any x in the band kernel of (Fg 1, ..., Fy5)

%1 F
A’( : > = ( : )fixesA’ (mod vy, ..., vg)
Vs F

Us+1 Fs+1
Al P o= i |fixes A (mod vy, ..., Vas)
V2s Fps

Together the two equations fix A" entirely. (assuming vy, ..., V5 are linearly independent
— high probability and easy to check.)
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Key Recovery Step 9:
Solving for the rest of B' and C’
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» Same equation as before without the (mod vy, ..., V)

(A'B",A'C") =T""" o Epyp
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Recall:

¢ Finding a band-space map costs approximately
«  q?%652% for characteristic 2.
+  q5*3s2% for characteristic 3.
* q5*2s2% for higher characteristic.

(w = 2.373 is the linear algebra constant.)
¢ Once a band space map is found, a full key recovery is possible at minimal additional cost.

A little background

* The motivation for the cubic ABC scheme was to improve the provable security of the original quadratic ABC
scheme (same, but the polynomials in A are linear)

¢ We did a similar analysis of quadratic ABC:
«  q5**s2% for characteristic 2.
* q5*2s2% for higher characteristic.

Cubic ABC does not eliminate structural attacks
The proposed parameters are still ok (since they used characteristic 2)

However, our attack breaks odd characteristic versions of cubic ABC that previously published
analysis says should be secure.
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