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Abstract. We report on the concrete cryptanalysis of LEDAcrypt, a
2nd Round candidate in NIST’s Post-Quantum Cryptography standard-
ization process and one of 17 encryption schemes that remain as can-
didates for near-term standardization. LEDAcrypt consists of a public-
key encryption scheme built from the McEliece paradigm and a key-
encapsulation mechanism (KEM) built from the Niederreiter paradigm,
both using a quasi-cyclic low-density parity-check (QC-LDPC) code.

In this work, we identify a large class of extremely weak keys and pro-
vide an algorithm to recover them. For example, we demonstrate how to
recover 1 in 2477 of LEDAcrypt’s keys using only 2'%72 guesses at the
256-bit security level. This is a major, practical break of LEDAcrypt.
Further, we demonstrate a continuum of progressively less weak keys
(from extremely weak keys up to all keys) that can be recovered in sub-
stantially less work than previously known. This demonstrates that the
imperfection of LEDAcrypt is fundamental to the system’s design.
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1 Introduction

Since Shor’s discovery 28] of a polynomial-time quantum algorithm for factoring
integers and solving discrete logarithms, there has been a substantial amount of
research on quantum computers. If large-scale quantum computers are ever built,
they will be able to break many of the public-key cryptosystems currently in use.
This would gravely undermine the integrity and confidentiality of our current
communications infrastructure on the Internet and elsewhere.

In response, the National Institute of Standards and Technologies (NIST)
initiated a process [1] to solicit, evaluate, and standardize one or more quantum-
resistant, public-key cryptographic algorithms. This process began in late 2017
with 69 submissions from around the world of post-quantum key-establishment
mechanisms or KEMs (resp. public-key encryption schemes or PKEs), and digital
signature algorithms. In early 2019, the list of candidates was cut from 69 to 24
(17 of which are PKEs), and the 2nd Round of the competition began [3]. The
conclusion of Round 2 is now rapidly approaching.



LEDAcrypt |4] is one of the 17 remaining candidates for standardization as a
post-quantum PKE scheme. It is based on the seminal works of McEliece |21] in
1978 and Niederreiter |24] in 1986, which are based on the NP-complete problem
of decoding an arbitrary linear binary code [5]. More precisely, LEDAcrypt is
composed of a PKE scheme based on McEliece but instantiated with a particular
type of codes (called QC-LDPC) and a KEM in the variant style of Niederreiter.
The specific origins of LEDAcrypt — the idea of using QC-LDPC codes with the
McEliece paradigm — dates back a dozen years to [17].

At a very high level, the private key of LEDAcrypt is a pair of binary matrices
H and @, where H is a sparse, quasi-cyclic, parity-check matrix of dimension
p x p-ng for a given QC-LDPC code and where @ is a random, sparse, quasi-
cyclic matrix of dimension p - ng X p - ng. Here p is a moderately large prime
and ng is a small constant. The intermediate matrix L = [Lg|...|Lp,—1] = H - Q
is formed by matrix multiplication. The public key M is then constructed from
L by multiplying each of the L; by Lgolfl. Given this key pair, information can
be encoded into codeword vectors, then perturbed by random error-vectors of a
low Hamming weightE Security essentially states that it should be difficult to
recover the originally-encoded information from the perturbed codeword unless
a party possesses the factorization of the public key as H and Q.

The LEDAcrypt submission package in the 2nd Round of NIST’s PQC pro-
cess provides a careful description of the algorithm’s history and specific design,
a variety of concrete parameters sets tailored to NIST’s security levels (claiming
approximately 128-bit, 192-bit, and 256-bit security, under either IND-CPA or
IND-CCA attacks), and a reference implementation in-code.

1.1 Owur Results

In this work, we provide a novel, concrete cryptanalysis of LEDAcrypt. We
begin by identifying a moderately-sized, very weak class of keys, which can be
recovered with substantially less computational effort than expected. This is a
major, practical break of the LEDAcrypt cryptosystem, which is encapsulated
in the following theorem:

Theorem 1.1. (Section@ There is an algorithm that costs the same as 24922

AES-256 operations and recovers 1 in 2477 of LEDAcrypt’s Category 5 (i.e.
claimed 256-bit-secure) ephemeral / IND-CPA keys.

Similarly, there is an algorithm that costs the same as 2°74% AES-256 oper-
ations and recovers 1 in 2°1-59 of LEDAcrypt’s Category 5 (i.e. claimed 256-bit-
secure) long-term / IND-CCA keys.

While most key-recovery algorithms can exchange computational time spent
vs. fraction of the key space recovered, this trade-off will generally be 1-to-1
against a secure cryptosystem. However, we note in the above that both 49.22 +
47.79 = 97.01 < 256 and 57.49+51.59 = 109.08 < 256, making this attack quite

'We refer the reader to Section for further technical details of the construction.



significant. Additionally, we note that this class of very weak keys is present in
every parameter set of LEDAcrypt.

While the existence of this class of imperfect keys is a serious concern, one
might ask: Is it possible to identify such keys during KeyGen, reject them, and
thereby save the scheme’s design? We are able to answer this in the negative.

Theorem 1.2 (Informal, Section. There exists a continuum of sub-classes
of progressively less weak keys, stretching from the weakest keys to all keys. Each
sub-class of keys in this continuum is progressively larger and can be recovered
with progressively more work per key (though, still, at a substantially lower com-
putational cost than expected).

Said another way, the existence of weaker-than-expected keys in LEDAcrypt
is fundamental in the system’s formulation and cannot be avoided without a
major re-design of the cryptosystem. For example, one could try to instantiate
the McEliece paradigm with a completely different flavor of code — but smaller
changes in design will be insufficient.

Finally, we apply our new attack ideas to attempting key recovery in the
average-case. Here we give only a partial, heuristic analysis, but which nonethe-
less demonstrates a mild improvement for the attacker.

Theorem 1.3 (Informal, Section . LEDAcrypt’s Category 5 ephemeral /
IND-CPA keys can be recovered, on average, in no more than 2259 bit operations.

We compare this to the computational cost of 2277 bit operations asserted
in LEDAcrypt’s specification sent to NIST. We also note that we consider just
a single case of the average-case attack in our analysis, but a very large num-
ber of other, similar cases must exist as well. A more complete analysis of our
average-case attack algorithm would necessarily further reduce the expected con-
crete security of LEDAcrypt in the average case. Regardless, this final analysis
demonstrates that for real parameters of interest, our attack indeed impacts
average-case security rather than just some class of weak keys that might be
removed by more aggressive rejection sampling.

1.2 Technical Overview of Our New Attacks

Basic Approach: Exploiting the Product Structure. The typical approach
to recovering keys for LEDAcrypt-like schemes is to use ordinary Information Set
Decoding (ISD) algorithms, a class of techniques which can be used to search for
low weight codewords in an arbitrary code. Generally speaking, these algorithms
symbolically consider a row of an unknown binary matrix corresponding to the
secret key of the scheme. From this row, they randomly choose a set of bit
positions uniformly at random in the hope that these bits will (mostly) be zero.
If the guess is correct and, additionally, the chosen set is an information set
(i.e., a set in which all codewords differ at least in one position), then the key
will be recovered with linear algebra computation. If (at least) one of the two
requirements on the set is not met, then the procedure resets and guesses again.



For our attacks, intuitively, we will choose the information set in a non-
uniform manner in order to increase the probability that the support of HQ),
i.e. the non-zero coefficients of HQ, is (mostly) contained in the complement
of the information set. At a high level, we will guess two sets of polynomials
Hy, ..., H}, —y and Qg g, -+ @1,y 1 5,1, then (interpreting the polynomials as p x
p circulant matrices) group them into quasi-cyclic matrices H' and Q’. These
matrices will be structured analogously to H and @, but with non-negative
coefficients defined over Z[z]/{aP — 1) rather than Fy[z]/{2zP 4+ 1). The hope is
that the support of H'Q’ will (mostly) contain the support of HQ. It should be
noted that a sufficient condition for this to be the case is that the support of
H’ contains the support of H and the support of Q' contains the support of Q.
Assuming the Hamming weight of H’'Q’ (interpreted as a coefficient vector) is
chosen to be approximately W, then the information set can be chosen as the
complement of the support of H'Q" and properly passed to an ISD subroutine
in place of a uniform guess.

Observe that the probability that the supports of H' and @’ contain the
supports of H and @, respectively, is maximized by making the Hamming weight
of H and Q' as large as possible while still limiting the Hamming weight of
H'Q" to W. An initial intuition is that this can be done by choosing the 1-
coefficients of the polynomials Hj, ..., H, _; and Qfg;..., @, _1.,,-1 t0 be in
a single, consecutive chunk. For example, by choosing the Hamming weight of
the polynomials (before multiplication) as some value B < W, we can take
Hj =2+ 2" + . 42" and Q) o = 2 + 2T 4 . actBL

Note that the polynomials Hj and Qf , (chosen with consecutive 1-coefficients
as above) have Hamming weight B, while their product only has Hamming
weight 2B — 1. In the most general case, uniformly chosen polynomials with
Hamming weight B would be expected to have a product with Hamming weight
much closer to min(B2, p). That is, for a fixed weight W required of H'Q’ by the
ISD subroutine, we can guess around W/2 positions at once in H' and @’ respec-
tively instead of something closer to v/W as would be given by a truly uniform
choice of information set. As a result, each individual guess of H' and @’ that’s
“close” to this outline of our intuition will be more rewarding for searching the
keyspace than the “typical” case of uniformly guessing information sets.

This constitutes the core intuition for our attacks against LEDAcrypt, but
additional considerations are required in order to make the attacks practically
effective (particularly when concrete parameters are considered). We enumerate
a few of these observations next.

Different ring representations The idea of choosing the polynomials within H’
and @' with consecutive nonzero coefficients makes each iteration of an infor-
mation set decoding algorithm using such an H' and @’ much more effective
than an iteration with a random information set. However there is only a lim-
ited number of successful information sets with this form. We can vastly increase
our range of options by observing that the ring Fa[z]/{z? + 1) has p — 1 isomor-
phic representations which can be mapped to one another by the isomoprhism
f(x) = f(x*). This allows us many more equally efficient choices of the infor-



mation set, since rather than restricting our choices to have polynomials Hj and
Q6,0 with consecutive ones in the standard ring representation, we have the free-
dom to choose them with consecutive ones in any ring representation (provided
the same representation is used for Hj and Qg .)

Equivalent keys. For each public key of LEDAcrypt, there exist many choices
of private keys that produce the same public key. In particular, the same public
key M = (L,,—1) 'L produced by the private key

H: [H()’Hl?”' 7H'n.0—1}7
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would also be produced by any private key of the form
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for any integers 0 < a;,b < p,i € {0,...,n9—1}. These p™°*+! equivalent keys im-
prove the success probability of key recovery attacks as detailed in the following
sections.

Different degree constraints for H' and Q’. While we have so far described H’
and Q' as having the same Hamming weight B, this does not necessarily need
to be the case. In fact, there are many, equivalent choices of H' and @’ which
produce the same product H'Q’ based on this observation. For example, the
product of

H) = 2% + 20T 4 . 4 g2 TB7L

Qoo =12+ et 4 getBL
is identical to the product of

H) =z + ot 4 gtBT10
Q60 — g€ +£CC+1 4o +xc+B71+6
for any integer —B < § < B. More generally, this relationship (that if H’ shrinks

and Q' proportionally grows, or vice versa, then the product H’'Q’ is the same)
is independently true for any set of {H],Q; g, ..., Q; ,, 1} for i € {0,...;ng — 1}.



Attacks for ng = 2 imply similar-cost attacks for ng > 2. Our attacks are more
easily described (and more effective) in the case ng = 2. In this case, we apply
ISD to find low-weight codewords in the row space of the public key [My | Mi]
to recover a viable secret key for the system. Naively extending this approach
for the case ng > 2 to the entire public key [My | ... | My,] requires constraints
on the support of ng +n2 polynomials (ng polynomials corresponding to H’ and
ng polynomials corresponding to Q’), so the overall work in the attack would
increase quadratically as ng grows. However, even in the case that ng > 2, we
observe that it is sufficient to find low weight codewords in the row space of only
[My | M;] in order to recover a working key, implying that the attack only needs
to consider 3ng polynomials H;, Q;0,Qk,1. So, increasing ng will make all of
our attacks less effective, but not substantially so. More importantly, any attack
against ng = 2 parameters immediately implies a similar-cost attack against
parameters with ng > 2. Therefore, we focus on the case of ng = 2 in the
remainder of this work.

A Continuum of Progressively Less Weak Keys. The attacker can recover
keys with the highest probability per iteration of ISD by using a very structured
pattern for L’. As we will see in section in this pattern both L{, and L} will have
a single contiguous stretch of nonzero coefficients in some ring representation.
The result is a practical attack, but one which is only capable of recovering weak
keys representing something like 1 in 240 or 1 in 2% private keys.

However, if the attacker is willing to use a more complicated pattern for the
information set, using different ring representations for different blocks of H’
and @', and possibly having multiple separate stretches of consecutive nonzero
coefficients in each block, then the attacker will not recover keys with as high a
probability per iteration, but the attack will extend to a broader class of slightly
less weak keys. This may for example lead to a somewhat less practical attack
that recovers 1 in 230 keys, but still much faster than would be expected given
the claimed security strength of the parameter set in question.

Improvements to Average-case Key Recovery. In section [5 we will take
the continuum of progressively weaker keys to its logical extreme. We show that
the attacks in this paper are asymptotically stronger than the standard attacks
not just for weak keys, but for all keys. Moreover, we give an argument that the
critical point at which the attacks in this paper overtake the standard attacks is
within the range of parameters of cryptographic interest, in particular including
some of the parameter sets proposed by the second round LEDAcrypt submission
targeting higher security levels.

As we move away from the simpler information set patterns used on the
weakest keys, the analysis becomes more difficult. To fully quantify the impact
of our attack on average keys would require extensive case analysis of all scenar-
ios that might lead to a successful key recovery given a particular distribution
of information sets used by the attacker. We do not attempt such an exhaustive
analysis, but rather analyze a single scenario for successful key recovery against
a single parameter set, finding even this particular scenario is enough to recover



typical keys faster than would be possible with the standard information set
decoding algorithm used to analyze the security of the parameters in the sub-
mitted specification. The true complexity of the attack is likely lower than our
estimate.

1.3 Related Work

The main attack strategies against cryptosystems based on QC-LDPC codes are
known as information set decoding (ISD) algorithms. These algorithms are also
applicable to a variety of other code-based cryptosystems including the NIST
2nd round candidates BIKE [23], HQC [8], Classic McEliece 9], and NTS-KEM
[18]. Initiated by Prange |26] in 1962, these algorithms have since experienced
substantial improvements during the years [2}[7}141/15//191/201/29]. ISD algorithms
can also be used to find low-weight codewords in a given, arbitrary code. ISD
main approach is that of guessing a set of positions where such codewords contain
a very low number of set symbols; when this set is actually an information set,
then linear algebra computations yield the searched codeword (see. ISD time
complexity is estimated as the product between the expected number of required
information set guesses and the cost of testing each set. Advanced ISD algorithms
improve Prange’s basic idea by reducing the average number of required guesses,
at the cost of increasing the time complexity of the testing phase. Quantum ISD
algorithms take into account Grover’s algorithm [10] to quadratically accelerate
the guessing phase. A quantum version of Prange’s algorithm [6] was presented
in 2010, while quantum versions of more advanced ISD algorithms were presented
in 2017 [12].

In the case of QC-MDPC and QC-LDPC codes, ISD key recovery attacks
can get a speed-up which is polynomial in the size of the circulant blocks [27].
This gain is due to the fact that there are more than one sparse vectors in the
row space of the parity check matrix, and no modification to the standard ISD
algorithms is required to obtain this speed-up. Another example of gains due to
the QC structure is that of [16] which, however, works only in the case of the
circulant size having a power of 2 among its factors (which is not the case we
consider here).

ISD can be generally be described as a technique for finding low Hamming-
weight codewords in a linear code. Most ISD algorithms are designed to assume
that the low-weight codewords are random aside from their sparsity. However, in
some cryptosystems that can be cryptanalyzed using ISD, these short codewords
are not random in this respect, and modified versions of ISD have been used to
break these schemes [22}25]. Our paper can be seen as a continuation of this
line of work, since unlike the other second round NIST candidates where ISD is
cryptanalytically relevant, the sparse codewords which lead to a key recovery of
LEDAcrypt are not simply random sparse vectors, but have additional structure
due to the product structure of LEDAcrypt’s private key.



2 Notation

Throughout this work, we denote the finite field with 2 elements by F,. We
denote the Hamming weight of a vector a (or a polynomial a, viewed in terms
of its coefficient vector) as w,. For a polynomial a we use the representation
a= f;ol a;x*, and call a; represents its i-th coefficients. We denote the support
— i.e. the non-zero coordinates — of a vector (or polynomial) a by S(a). In similar
way, we define the antisupport of a, and denote it as S(a), as the set of positions
i such that a; = 0.

We denote a polynomial a with support equal to a set of indices J by a(”).
We denote the set of coefficients of a polynomial a that are indexed by a set of

indices J by al;.

3 Attack on the Weakest Class of Keys

In this section, we present an attack against a class of weak keys in LEDAcrypt’s
design. We begin by identifying what appear to be the weakest class of keys
(though large enough in number to constitute a serious, practical problem for
LEDAcrypt). We proceed to provide a simple, single-iteration ISD algorithm to
recover these keys, then analyze the fraction of all of LEDAcrypt’s keys that
would be recovered by this attack. Afterward, we show how to extend the ISD
algorithm to more than one iteration, so as to enlarge the set of keys recovered
by a similar enough of effort per key. We conclude by considering the effect of
advanced ISD algorithms on the attack as well as the relationship between the
rejection sampling step in LEDAcrypt’s KeyGen and our restriction to attacking
a subspace of the total key space.

Extending this attack from the class of weakest keys to a continuum of pro-
gressively less weak keys is considered in the subsequent section.

3.1 Attacking an example class of ultra-weak keys

The simplest and, where it works, most powerful version of the attack dramati-
cally speeds up ISD for a class of ultra-weak keys chosen under parameter sets
where ng = 2. One example class of ultra-weak keys are those keys where the
polynomials Lo and L; are of degree at most £. Such keys can be found by a
single iteration of a very simple ISD algorithm:

The attacker chooses the information set to consist of the last % columns
of each block of M. If the key being attacked is one of these weak keys, the
attacker can correctly guess the top row of L as being identically zero within
the information set and linearly solve for the nonzero linear combination of the
rows of M meeting this condition. The cost of the attack is one iteration of an
ISD algorithm.

A sufficient condition for this class of weak key to occur is for the polynomials
Hy, Hy, Qo,0, Qo,1, Q1,0, and Q1,1 to have degree no more than £. Since each of
the 2mg+2m1 +2d, nonzero coefficients of these polynomials has a i probability



of being chosen with degree less than £, these weak keys represent at least 1 part
in 42mo+2mi+2dv of the key space.

3.2 Enumerating ultra-weak keys for a single information set

In fact, there are significantly more weak keys than this that can be recovered
by the basic, one-iteration ISD algorithm using the information set described
above. Intuitively, this is for two reasons:

1. Equivalent keys: There are p? private keys, not of this same, basic form,
which nonetheless produce the same public key.

2. Different degree contraints:The support of the top row of L will also fall
entirely outside the information set if the degree of Hy is less than £ —§ and
the degrees of Qo0 and Qo,1 are both less than £ 4-§ for any § € Z such that
-8 <6 < & Likewise for H; and Q1,0 and Q1 1, for a total of p keys.

Concretely, we derive the number of distinct private keys that are recovered
by the one-iteration ISD algorithm in the following theorem.

Remark 1. There are p columns of each block of M. Instead of referring to pairs

-1 1 .
of 25= and % columns, we instead use £ for both cases.

Theorem 3.1. The number of distinct private keys that can be found in a single
iteration of the decoding algorithm described above (where the information set is
chosen to consist of the last 252 columns of each block of M) is

pS'AO =07 d_1<< )(d 21>

BAy—2\ (B-Ay—
mo—l

NS |
Mo (1)
L (B Ao—1) (40— 1Y (B-Ar—2) (B4 -1

mo mi my — 1 mo

Proof. We are using the same information set for both HyQo,0 + H1Q1,0 and
HyQo,1 + H1Q1,1. Therefore we count according the first nonzero bit of the sum
HyQo,0+H1Q1,0+HoQo,1+H1Q1,1. Let [ be the location of the first nonzero bit
of M, let jg,j1 be the locations of the first nonzero bit of Hy, Hy, respectively.
Suppose that the nonzero bits of Hy, H; are located within a block of length
Ag, A1, respectively.



We begin by considering H, Q) such that H@Q does not have full weight. Once
Jo is fixed, there are four blocks of ¢ which may influence the location [. We
compute the probability that only one block of Q may influence [ at a time.
b
If [ is influenced by Qo,0, there are (5;1:)43;2) ways the remaining bits of Qoo
g—Ao—l) £-A
mi

can fall, ( .

the bits of Q1,, and (gj‘s;*l) arrangements of the bits of @y ;. If { is influ-
enced by Qo,1,@1,0, or @11, similar estimates hold. We sum over the [ locations
considering each of the blocks of @ and their respective weights.

Failure to impose full weight requirements on H () introduces double-counting,
though the probability of which will not exceed O(%). O

arrangements of the bits of Qo 1, ( 11_1) arrangements of

We can now estimate the percentage of these recovered, ultra-weak keys out
of all possible keys.

Theorem 3.2. Let m = mgy + mqy,x = %,y = %- Out of (£>2<£0)2(£1)2

possible keys, we estimate the percentage of ultra-weak keys found in a single
iteration of the decoding algorithm above as

(2 1 1 ™ 1
dy*(d, — 1)2m/ / (zy)dv—2 (< — m) ( - y)) (1 + 1) dzdy.
=0 Jy=0 2 2 2 x 2 Yy

Proof. Note that the lines 2 — 5 of are approximately
E—Ao\ (5—Ao\ (5 -4\ (54 mo £y Mo f )
mo my my mo % — Al g — A()

2 Ap\ 1 A\ Ap—1Y\ 4\
For be {01}, (F0) ~ (2) (- 2) and (73) = (/) (2) " since
p is much larger than mg, m1,d,. Then we rewrite as

b
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Dividing by ((5)2(750)2(751)2’ the result follows. O

Evaluating this percentage with the claimed-256-bit ephemeral (CPA-secure)
key parameters of LEDAcrypt — d, = 11,m = 13 — we determine that 1 in

10



272-8 ephemeral keys are broken by one iteration of ISD. Similarly for the long-

term (CCA-secure) key setting, we evaluate with the claimed 256-bit parameters
— dy = 13;m = 13 — and conclude the number of long-term keys broken is 1
in 2806,

This result merely determines the number of keys that can be recovered
given that the information set of both blocks of M is chosen to be the last
p—1

5= columns In the following, we turn to demonstrating a class of additional

information sets that are as effective as this one.

3.3 Enumerating ultra-weak keys for all information sets

Now we will demonstrate a multi-iteration ISD attack that is effective against
the class of all ultra-weak keys. To set up the discussion, we begin by highlighting
two, further “degrees of freedom,” which will allow us to find additional, relevant
information sets to guess:

1. Changing the ring representation: Contiguity of indices depends on
the choice of ring representation. The large family of ring isomorphisms on
Zlx]/{xP —1) given by f(x) — f(z') for t € [0, p| preserves Hamming weight.
For example, we can use the family of polynomials

H=Q, =1+ +a®+. . +a" 7"

in this attack, since there exists one ¢ such that H] has consecutive nonzero
coefficients. Choices of t € {1,..., %} yield independent information sets
(noting that choices of ¢ and —t mod p yield equivalent information sets).

2. Changing the relative offset of the two consecutive blocks: We can
also change the beginning index of the consecutive blocks produced within
Lg or L (by modifying the beginning indices of H; and Q; ; to suit). Note
that shifting both L{, and L by the same offset will recover equivalent keys.
However, if we fix the beginning index of L{, and allow the beginning index of
L} to vary, we can find more, mostly independent information sets in order
to recover more, distinct keys. The exact calculation of how far one should
shift L}’s indices for a practically effective attack is somewhat complex; we
perform this analysis below in the remainder of this subsection.

Recall that in the prior 1-iteration attack, we considered one example class
of ultra-weak keys — namely, those keys where the polynomials Ly and L, are of
degree at most §. Here, we will now take a broader view on the weakest-possible
keys. We define the class of ultra-weak keys to be those where, in some
ring representation, both HyQo0 + H1Q1,0 and HyQo 1 + H1 Q1,1 have nonzero

coefficients that lie within a block of 2 gl—many consecutive (modulo p) degrees.

2For the reader, we point out that if, hypothetically, we had a sufficiently large num-
ber of totally independent information sets that were equally “rewarding” in recovering
keys, this would straightforwardly imply ~ 2728-time and ~ 28°5-time “full” attacks
against LEDAcrypt’s claimed-256-bit parameters rather than weak-key attacks.

11



Our goal will be now to find a multi-iteration ISD algorithm — by estimat-
ing how far to shift the offset of L] per iteration — that recovers as much of
the class of ultra-weak keys as possible without “overly wasting” the attacker’s
computational budget. Toward this end, recall that we have a good estimate
in Theorem of the fraction of keys (27728 resp. 27896) recovered by the
best-case, single iteration of our ISD algorithm. In what follows, we will first
calculate the fraction of ultra-weak keys as a part of the total key space.

Let 27X be the fraction of all keys recovered by the best-case, single iteration
of our previous ISD algorithm. Let 2~Y be the fraction of ultra-weak keys among
all keys. On the assumption that every ring representation leads to independent
information sets (chosen uniformly for each invocation of ISD) and on the as-
sumption that independence of ISD key-recovery is maximized by shifting “as
far as possible,” we will compute an estimate of the number of index-shifts that
should be performed by the optimal ultra-weak-key attacker as 24 = 2%X~=Y . Be-
yond 27 shifts per guess (but not until), the attacker should begin to experience
diminishing returns in how many keys are recovered per shifted guess.

Therefore given an index beginning at 1 out of p positions, the attacker will

shift by 2 ) indices at each invocation (where the factor £5= L accounts for the
effect of the different possible ring representations). By assumption, each such
guess will be sufficiently independent to recover as many keys in expectation
as the initial, best-guess case described by the 1-iteration algorithm. We note

that additional, ultra-weak keys will certainly be obtained by performing more

work — specifically by shifting less than M

a reduced rate of reward per guess.

per guess — but necessarily at
Toward this end, we now calculate the number of ultra-weak keys then the

fraction of ultra-weak keys among all keys following the format of the previous
calculation.

Theorem 3.3. The total number of ultra-weak keys are
—14 5 S [Ag—1\ (A —1
oy ()@ ®
=d,—1 A=d, —
p—1
1\ /2 -4, —1 B Ag—1\ (2 —A —1
(( SO0 )EED)
I mo — 1 my mo my — 1
”i B -1\ (F-A -1 (5 A1) (b A1 @
mg — 1 mq mo — 1 mo '
1,=0
Proof. The proof technique follows as in Theorem Details are found in the

appendix, O
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Theorem 3.4. Let m = mg + mq,x = %, Yy = %. The fraction of ultra-weak

keys out of all possible keys is

p—1, 4 2/% /% dy—2 dy—2 (1 ! "
P 4.2(dy 1 e -
5 ( ) ol Y 5 ¢ 5 Y

mo? +m4? momy mom
T T T 5 T 5 dzdy.
G-2)iz-y) (-2 (z-v)
Proof. Similar techniques apply. See appendix for details. O

We evaluate the fraction of weak keys using the claimed CPA-secure parame-
ters p = 36877, m = 13,d, = 11 and determine that 1 in 2°%! ephemeral keys are
broken. Evaluating with one of the CCA-secure parameter sets p = 152,267, m =
13,d, = 13, approximately 1 in 2597 long-term keys are broken.

Given the above, we can make an estimate as to the optimal shift-distance per

. . 36,877(20:576) 10.6
ISD invocation as —ms—sitT— ~ 1597 ~ 2 for the ephemeral key parameters

152,267( 152,256 12.5
and —sop=sor— ~ 5925 ~ 2 for the long-term key parameters.

The multi-iteration ISD algorithm against the class of ultra-weak keys, then,
makes its first guess (except, one in each ring representation) as in the case
of the 1-iteration ISD algorithm. It then shifts the relative offset of the two
consecutive blocks by the values calculated above and repeats (again, in each
ring representation).

This will not recover all ultra-weak keys, but it will recover a significant
fraction of them. In particular, if the support of each block of L, rather than
fitting in & consecutive bits fits in blocks that are smaller by at least % of the
shift distance. We can therefore lower bound the fraction of recovered keys by
replacing factors of % with factors of £ minus half or a quarter of the offset, all
divided by p, to find the sizes of sets of private keys of which we are guaranteed
to recover all, or at least half of respectively.

The multi-iteration ISD algorithm attacking the ephemeral key parameters
will make 272:8-541 ~ 2187 independent guesses and recover at least 1 in 2960
of the total keys. The multi-iteration ISD algorithm attacking the long-term key
parameters will make 280-6-59-7 &~ 2209 independent guesses and recover at least
1 in 2516 of the total keys.

3.4 Estimating the effect of more advanced information-set
decoding

Our attempts to enumerate all weak keys were based on the assumption that
the adversary was using an ISD variant that required a row of L to be uniformly
0 on all columns of the information set. The state of the art in information set
decoding still allows the adversary to decode provided that a row of L has weight
no more than about 6 on the information set. For example, Stern’s algorithm [29]
with parameter 3 would attempt to find a low weight row of L as follows:
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The information set is divided into two disjoint sets of § columns. The first
row of L to be recovered should have weight at most 3 within each of the two
sets. Further, the same row of L should have have 2(log(p)) many consecutive
0’s in column-indices that are disjoint from those of the information set. If both
of these conditions occur, then a matrix inversion is performed (even though 6
non-zero bits were contained in the information set).

Note that for reasonably large p, nearly a third of the sparse vectors having
weight 6 in the information set will meet both conditions. The most expensive
steps in the Stern’s algorithm iteration are a matrix inversion of size p and a claw
finding on functions with logarithmic cost in p and domain sizes of (g) The claw
finding step is similar in cost to the matrix inversion, both having computational
cost =~ p?. The matrix inversion step is present in all ISD algorithms. Therefore
with Stern’s algorithm we can recover in a single iteration with similar cost to
a single iteration of a simpler ISD algorithm, O(1) of the private keys where a
row of L has weight no more than 6 on the information set columns.

Recall that we choose the information set to be of size ~ & in L’. The dis-
tribution of the non-zero coordinates within a successful guess of information
set will be more heavily weighted toward the middle of the set and approxi-
mately triangular shaped (since these coordinates are produced by convolutions
of polynomials). In particular, we will heuristically model both of the tails of the
distribution as small triangles containing 3 bits on the left side and three bits
on the right that are missed by the choice of information set.

Let W = 2d,,(mg + mq) denote the number of non-zero bits in L’. Then the
actual fraction € that the information set (in the context of advanced information
set decoding) should target within L, rather than 1/2; can be estimated by

geometric area as
3 1
1o, /2 ==
¢ ( \/ W/2> 2

7 (vn)

For the claimed-256-bit ephemeral key parameters, we have tcpa = 286. For
the claimed-256-bit long-term key parameters, we have tcca = 338. Therefore,

or, re-writing:

€ =

1

ECPA = —7
/3
2 (1 - 286/2)

1

€CCA = 7
2 (1 Y, 338/2)

So — heuristically — we can model the effect of using advanced information
set decoding algorithms by replacing the %’s in the calculations of the theorems
earlier in this section by ecpa or ecca respectively.

~ 0.585.

~ 0.577.
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3.5 Rejection sampling considerations

We recall that LEDACrypt’s KeyGen algorithm explicitly requires that the parity
check matrix L be full weight. Intuitively full weight means that no cancellations
occur in the additions or the multiplications that are used to generate L from
H and Q. Formally, the full weight condition on L can be stated as:

70
Vi€ {0,...,no — 1}, weight(L;) =dy, Y m;.
j=0

When a weak key notion causes rejections to occur significantly more often
for weak keys than non-weak keys, we will effectively reduce the probability of
weak key generation compared to our previous analysis. As an extreme example,
if, for a given weak key notion, rejection sampling rejects all weak keys, then no
weak keys will ever be sampled. We therefore seek to measure the probability
of key rejection for both weak keys and keys in general in order to determine
whether the effectiveness of this attack is reduced via rejection sampling.

Let X, W C K, and KeyGen be the public key space, the weak key space,
and the key generation algorithm of LEDACrypt, respectively. Let X', W C K',
and KeyGen' be the associated objects if rejection sampling were omitted from
LEDACrypt. We observe that since KeyGen samples uniformly from /C,

w
Pr [pk € W|(pk, sk) < KeyGen()] = ||IC||
This equality additionally holds when rejection sampling does not occur. Since,
until now, all of our analysis has ignored rejection sampling we have effectively
been measuring |W'|/|K’|. We therefore seek to find a relation that allows us
determine [W|/|K| from |K'| and W’|. We observe that

IWI_ WV IR py'] vl K|
LRV vk

Therefore it holds that the probability of generating a weak key when we consider
rejection sampling for the first time in our analysis changes by exactly a factor
of (IW|/IW']) - (IK’|/|K|). This is precisely the probability that a weak key will
not be rejected due to weight concerns divided by the probability that key will
not be rejected due to weight concerns.

We note that as long as the rejection probabilities for both keys and weak
keys is not especially close to 0 or 1, then it is sufficient to sample many keys
according to their distributions and observe the portion of these keys that would
be rejected.

In order to practically measure the security gained by rejection sampling
for the 1-iteration ISD attack against the ephemeral key parameters, we sample
10,000 keys according to KeyGen' and we sample 10,000 weak keys according
to KeyGen' and we observe how many of them are rejected. We observe that
approximately 39.2% of regular keys are rejected while approximately 67.4% of
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weak keys are rejected. We therefore conclude for this attack and this parameter

set, % =0.582 “‘,/CV,/II. Therefore, rejection sampling grants less than 1 additional
bit of security back to LEDACrypt.

This attack analysis can be efficiently reproduced for additional parameter
sets and alternative notions of weak key with the same result.

3.6 Putting it all together

Finally, we re-calculate the results of Section [3.2] using Theorems and
but accounting for the attack improvement of using advanced information set
decoding from Section [3-4] and accounting for the security improvement due
to rejection sampling issues in Section We re-write the formulas with the
substitutions of ecpa (resp. ecpa) for the constant % for the reader, and note
that the definition of ultra-weak keys has been implicitly modified to have more
liberal degree constraints to suit the advanced ISD subroutine being used now.

Let z,y,m be defined as in Theorem [3.4] For the case of claimed-256-bit
security for ephemeral key parameters, the fraction of ultra-weak keys recovered

by a single iteration of the advanced ISD algorithm is

€

0= [ [t (e a e

=0

1
+
E—r €—yY

) dzdy,

and the fraction of these ultra-weak keys out of all possible keys is

(@), =17 [ [ty e )

mo? + my? moma mom;
((EI)(Ey) (efz)Z (Ey)Q) dzdy.

Evaluating with ephemeral key parameters d, = 11,mg = 7,m; = 6,p =
36,877 and substituting € = .577 yields 1 key recovered in 2%3-%! per single
iteration, and 1 ultra-weak key in 2% of all possible keys. This yields an
algorithm making 2'® 72 guesses and recovering 1 in 2*77 of the ephemeral keys
(accounting for the loss due to rejection sampling and the limited number of
iterations).

Substituting e = .585 similarly and evaluating with long-term key parameters
d, = 13,mg = T,m; = 6,p = 152,267 yields 1 key recovered in 26°48 per
single iteration and 1 ultra-weak key in 248-59 of all possible keys. This yields an
algorithm making 22089 guesses and recovering 1 in 25159 of the long-term keys
(accounting for the loss due to rejection sampling).

To conclude, we would like to compare this result against the claimed se-
curity level of NIST Category 5. Formally, these schemes should be as hard to
break as breaking 256-bit AES. Each guess in the ISD algorithms leads to a
cost of approximately p3 bit operations (due to linear algebra and claw finding
operations). This is 24%-® bit operations for the ephemeral key parameters and
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2516 bit operations for the long-term key parameters. A single AES-256 opera-
tion costs approximately 2'° bit operations. This yields the main result of this
section.

Theorem 3.5 (Main). There is an advanced information set decoding algo-
rithm that costs the same as 24922 AES-256 operations and recovers 1 in 24779
of LEDAcrypt’s Category 5 ephemeral keys.

Similarly, there is an advanced information set decoding algorithm that costs
the same as 2°749 AES-256 operations and recovers 1 in 2519 of LEDAcrypt’s
Category 5 long-term keys.

Remark 2. Note that 49.224-47.79 = 97.01 < 256, 57.49+51.59 = 109.08 < 256.

4 Continuum of Weak Keys

In the previous section we have described a family of LEDAcrypt secret keys,
which we have defined ultra-weak, that can be easily recovered with advanced
ISD algorithms. One may think that, to avoid such an issue, the key generation
algorithm may be tweaked to reject such keys. However, ultra-weak keys repre-
sent only the tip of the icerberg, since there are many more typologies of keys
that may be recovered with an ISD algorithm running with extremely low time
complexity. Indeed, we can find many more pairs of matrices (H, Q) such that
the distribution of ones in the corresponding L = H(Q is strongly biased, with
respect to random a matrix with the same dimension and weights. With this
criterion in mind, we can formally define a family of weak keys as follows.

Definition 4.1. Let K be the public key space of LEDAcrypt with parameters
1o, p, dy, mg, my. Let T C {0,--- ,p—1} of cardinality k = (ng—1)p and W C K
be the set of all public keys corresponding to secret keys sk = (H, Q) such that the
corresponding L = HQ contains (at least) a row whose support is disjoint with
T. Finally, we define w = ng(mo +m1)d, and U, as the uniform distribution of
(nop)-uples with weight w. Then, we say that W is a set of weak-keys if

("5 )

()

In the remainder of this section, we describe a way to identify many families
of keys matching the previous definition; we finally provide estimates on the time
complexity required by an ISD searching for these keys, To simplify our analysis,
without loss of generality, we significantly reduce the degrees of freedom that can
be exploited to define such families of keys, yet, we are able to detect a continuum
of families of weak keys. Our results show that considering all of these properties
and rejecting such keys, in the key generation algorithm, is clearly infeasible.

Pr [pk € W|(sk,pk) + KeyGen()] > Pr[T NS(a) = &la ~U,] =

17



4.1 Preliminary considerations on sparse polynomials
multiplications

Let N(c;) denote the set of terms that contribute to the sum in Eq. (7), i.e.
N(c;)={z st. 2¢S(a) and i—2 mod p¢&S(b)}.

We now denote with @ and b the polynomials obtained by lifting a and b over
Z[z]/{xzP — 1) i.e., by mapping the coefficients of a and b into {0,1} C Z. Let
¢ = ab: we straightforwardly have that ¢ = ¢ mod 2, [N(¢;)| = & and Zi:ol ¢ =
wt(a) - wt(b). Let @’ be a polynomial such that S(a’) 2 S(a), i.e., such that its
support contains that of a (or, in another words, such that its antisupport is
contained in that of a); an analogous definition holds for b’. We define ¢’ = a'b':
it is immediately seen that ¢, > ¢; for all 4; indeed, we can write o’ = a+ s, and
b = b+ sy, for two polynomials s, and s, taking values in {0,1} C Z. Then

a'V = (a4 54)(b+ 5p) = ab + 540+ Spd + Sq55 = ¢+ Sab + Spd + SaSp-
Since sal;, spa and sgsp have all non-negative coefficients, we have

¢ > [N(e)| 2 0,¥i € {0, ,p—1}. )

We now derive some properties that link the coefficients of ¢’ to those of c;
as we show, knowing portions of the antisupports of @ and b is enough to gather
information about the coefficients in their product.

Lemma 4.2. Let a,b € Fyz]/(aP + 1), and Jo,Jp C {0,--- ,p — 1} such that
Jo 2 S(a) and Jp 2 S(b). Let o',b € Zx]/(x? — 1) the polynomials whose
coefficients are null, except for those indexed by J, and Jy, respectively, which
are set as 1. Let ¢ = ab € Fa[z]/(x? + 1) and ¢ = a'b’ € Z[z]/{«P — 1); then

;=0 = ¢;=0.

Proof. The result immediately follows from by considering that if ¢, = 0 then
necessarily |N(¢;)| = 0 and, subsequently, ¢; = 0. O

When the weight of ¢ = ab is maximum, i.e., equal to wt(a)wt(b), the prob-
ability that a coefficient ¢; is null can be related to that of ¢ as stated by the
following Lemma.

Lemma 4.3. Let a,b € Fo[z]/(xP + 1), with respective weights w, and wy, with
wawp < p. Let ¢ = ab such that w = wt(c) = wawp. Let J, 2 S(a) and J, 2 S(b),
and o',V € Zlx])/(xP — 1). Let ¢, be the i-th coefficient of ¢ = a'V’, and denote
M =1|J,| - |Jp|. Then

, -1
Prie; = 0|cf] = v(M,w,c}) = (1 tw: W) '
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Proof. The result follows from a combinatorial argument. See [B-3]for details. [

Taking into account the previous Lemma, we can derive the probability that
specific coefficients in the polynomial product are simultaneously null.

Lemma 4.4. Let a,b € R, with respective weights w, and wy, with w,wp < p.
Let ¢ = ab such that w = wt(c) = wewp. Let J, 2 S(a) and J, 2 S(b), and
a' b e Zlx]/(x? — 1). Let ¢, be the i-th coefficient of ¢ = a'b', and denote
M = |Jg| - |Jp|. Let V ={vp, - ,v.—1} C{0,--- ,p— 1}, then

t—1

Pr [Wt(C|V) =0 | C,] = C(Va C/aw) = H 7(M - Eﬁ;é C{l]j’w’ C;M).
=0

Proof. We model the computation of each coefficient ¢; with the urn experiment
described in the proof of Lemma [4:3] Then, the coefficients indexed by V are
modeled through t = |V| extractions without replacement: this is due to the
fact that each product asb, contributes only to a single coefficient in ¢’. At the
first extraction, the urn contains M — w balls of the first color and w of the
second color. We have ¢,, = 0 if and only if all extracted balls are of the first
color. Then, at the second extraction, the urn contains M —w — c;O balls of the
first color and w of the second one. Iteration of this reasoning easily returns the
probability expressed by the Lemma. O

4.2 Identifying families of weak keys

We are now ready to use the results presented in the previous section to describe
how, in LEDAcrypt, families of weak keys as in Def. can be defined. The
idea we consider is particularly simple, and builds on the criteria described in
Sec. We consider “containers” for each polynomial in the secret key, i.e.,
polynomials over Z[z] /(2P — 1) whose support contains that of the corresponding
polynomials in Fo[z]/(2P 4+ 1). We then combine such containers, and use the
results of Lemmas [.3] [£4] to find the positions that, with high probability,
do not point at set coefficient in the polynomials in L = HQ. For the sake of
simplicity, and without loss of generality, we describe our ideas for the practical
case of ng = 2. A visual representation of our proposed constructive method to
search for weak keys is found in Appendix C.

We consider sets Jy, such that Jy, O S(H;), for i = 0,1; the cardinality of
Ju, is denoted as Bpy,. In analogous way, we define sets Jg, ;, for i = 0,1 and
J = 0,1, with cardinalities Bq, ;. To each set Jy, and Jg, ; we associate the
polynomials H;, Q; ; € Z[z]/{z? — 1), respectively. We think of these sets (and
the respective polynomials) as ” containers” for the polynomials in the secret key.
We define

Li; = HiQj,; € Z[2]/{a” = 1), (i,4) € {0, 1},

Each LQJ is a container for for each product H;();;, i.e., the support of L;;J-
contains that of H;Q); ;. Furthermore, the coefficients of Lg’ ; give us the likelihood
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with which positions in H;@;; are null. We can indeed apply Lemma @ it is
easily seen that, because of the maximum weight requirement in LEDAcrypt
key generation, each polynomial L;J matches the hypothesis required by the
Lemma. For instance, for L ,, we have w = mqd,, and the coefficients with the
lowest values are those that, with the highest probability, are actually null in
HyQo,0. Analogous reasoning applies to the other L; ;.

We now consider that each polynomial in L is obtained as L; = HoQo,1 +
H1Q1,;. We now need to combine the coefficients of the polynomial containers
LQ ;» to identify positions that are very to be null in each L;. We here consider a
very simple criterion which, despite not being optimal, let us avoiding cumber-

some notation and computations and yet leads to good results. We define
Li=Lio+Li, = HyQo,; + H1Q); € Z[z]/ (2" — 1).

Let m; € S,, with i« = 0,1, be a permutation such that the coefficients of
e (L;) are in non decreasing order. We represent a permutation as an ordered
set {lo, 1, -+ ,¢n_1}, such that the element in position ¢, goes in position w.
Then, as a criterion to determine our size-p set T', we choose the first g entries
of mp, which we group in a set Ty, and the first £ ones of 71, which we group in
a set T1. We then define T as T =Ty U {p+¥¢| £ € T }.

We now provide an estimate of the number of secret keys that meet the
requirements we have imposed, i.e., keys leading to polynomials Ly and L; that
do not overlap with the chosen sets Ty and T}, respectively.

We analyze the simple case in which initial guesses for containers have con-
stant size, i.e., By, = By and Bg, , = Bg, for all i and j; furthermore, we
choose Jg, , = Jg,, and Jg, , = Jg, ,, for all 4, j.

First of all, we compute the number of polynomials H;Q); ; whose supports
are contained in the sets Jy, and Jg, ;. We denote with J the number of secret
keys whose polynomials are contained by our initially chosen polynomials H/
and Q; ;; cardinality of this set gets estimated as

7=((2) ()

where 7 is the acceptance ratio in key generation, i.e., the probability that a
random choice of matrices H and @ leads to a matrix () with full weight.

We now compute the number of keys in J that produce polynomials L
and L corresponding to a correct choice for T, and 77, i.e., such that their
supports are disjoint with Ty and T3, respectively. Because of our choices in
the selection of T, this quantity corresponds to the portion of keys in J that
produce polynomials HyQo ; and H;Q; ; with supports that do not overlap with
T;, for i = 0,1. We can then use Lemma[4.4} the probability that a random key
from J is such that the support of the associated polynomials HyQo,o does not
overlap with Tj is C(To, Lg)o, modv). Then, if we also take into account H;Q1 o,
the probability that the support of Ly does not overlap with Ty is obtained as

Pr [nul1(Ty)] = ¢(To, Lg o, mody) - ¢(To, Lo 1, mady).
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We now take into account Ti: given our restriction on the possible choices for
the sets for Qo1 and Q1,1, we have Pr[null(Tp)] = Prinull(7})]. Then, the
probability that a random key from 7 is associated to a valid L is

Pr [null(7T)] = Pr [null(7p)] - Pr [null(7y)]

2
= (C(TO;LIO,OamOdv) . C(To,L671,m1dv)> . (6)

Thus we conclude that, for each choice of sets Jg, and Jq. ;s such that Jg, , =
Jg,, for i = 0,1, we define a family of keys VW with cardinality

(W] > |TJ| - Prnull(T)],

where inequality comes from the fact the above formula does not take into ac-
count existence of equivalent keys. Clearly, the coeflicients of the covering poly-
nomials Lgyj and, subsequently, the cardinality of W, depend not only on By
and Bg, but also on the actual elements in Jy, and Jq, ;. In the following section
we provide some concrete examples on how to choose such sets, and compute
the portion of associated weak keys.

4.3 Results

In this section we provide practical examples on how to run Algorithm [C] to
define actual families of weak keys. To this end, we need to define clear criteria
on how the sets Jy, and Jg, ; can be selected; following the choice of the previous
section, we choose By, = By for all i, Bg, , = Bq for all 4, j, and Jg, , = Jq,.,,
JQ1.0 = J@.,- We then consider three different strategies to pick these sets.

I. For i =0,1, a; € {0,--- ,p — 1}, we choose

Ju, ={¢ modpl0<{<By—1},
Jg., ={ai+{¢ modpl|0 << Bg—1}.

The corresponding family of weak keys is denoted as W),
Il. Fori=0,1, a;,0; € {0,--- ,p— 1}, we choose

J, = {05 modpl0<{<By-—1},
Jg,; ={ai+45; modpl0<{<Bg—1}.

The corresponding family of weak keys is denoted as WU 1),

III. For i = 0,1, my and By such that myBy < p, and aEH) €{0,---,p—1},
we choose
mg—1
Ju, = U {a;+¢ modp|0<¢<By-—1},
j=0
such that all sets {a; + ¢ mod p|0 < ¢ < By — 1} are disjoint. Analogous
formalism and notation is used to choose sets Jq, ;. The corresponding family

of weak keys is denoted as WU 1D,
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Tables [T} 2] display results testing various weak key families for two different
LEDAcrypt parameters sets. The identified families of keys meet Definition [}
so can actually be considered weak. We did not perform optimization over all
possible choices: our results, despite being referred to limited choices in the
family selection, show that many families of weak keys exist.

[Type] Family Parameters [Pr [pk € W(sk, pk)]|

I By = Bg = 7470 > 9—99.88
ao=a; =0 B

I Bg = 8000, Bg = 4000 > 9—85.25
ao = 2000, a1 = 2000 -

I Bg = 6000, Bg = 4000 > 9—116.32
ao = a1 = 1000, 5o = 200, 6; = 100 ~

By = 8500, Bg = 4000 —90.23

1 ao:a1:0,(50=61:127 22
0| TH2> b = 4500,17%: 2,((;}% = 2500 S g-t015s
ag ' =a; ' =10,7000],ay"’ =aj ' = [0,8000]

Table 1. Fraction of weak keys, for LEDAcrypt instances designed for 128-bit security,
with parameters no = 2, p = 14939, d, = 11, mo = 4, m1 = 3, for which n ~ 0.7090.
For this parameter set, probability of randomly guessing a null set of dimension p, in

a vector of length 2p and weight 2(mo + m1)d,, is 2715457,
[Type] Family Parameters [Pr [pk € W|(sk, pk)]]
B = 18000, B = 9000 —125.18
>
I a0 = a1 = 9000 =2
I Br = 24000, B = 12000 > 918421
ap=a; =0
Br = 18000, B = 9000 —125.18
>
I ao=a1=0,00 =01 =5 =2
By = Bg = 18439 —220.52
>
1 ao=a1 =0,00 =1,61 =2 =2
mi = 1,br = 21000, mg = 3, bg = 4000
1II aéH> _ a<1H) = [0] > 927030
ol = a{™ = [0, 10000, 20000]

Table 2. Fraction of weak keys, for LEDAcrypt instances designed for 128-bit security,
with parameters ng = 2, p = 36877, d, = 11, mo = 7, m1 = 6, for which n ~ 0.614.
For this parameter set, probability of randomly guessing a null set of dimension p, in
a vector of length 2p and weight 2(mo + m1)d,, is 2728680,
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5 Attack on All Keys

Assuming the LEDAcrypt approach is parameterized in a balanced way, that
is H and @ are similarly sparse, and further assuming that ng is a constant,
the complexity of the ordinary ISD attack (with a randomly chosen information
set) has a complexity of Ewp(é(p%)), but a better asymptotic complexity of
Ewp(@(pi)) may be obtained using structured information sets, even when not
attacking weak keys.

To see this, imagine we are selecting the nonzero coefficients of H' and Q’
completely at random, aside from a sparsity constraint. The sparsity constraint
needs to be set in such a way that the row weight of the product H'Q’ (re-
stricted to two cyclic blocks) has row weight no more than p. This further
constrains the row weight of each cyclic block of H' and @’ to be approxi-

1
mately (MZ—E)QU = O(p% ). The probability of success per iteration is then at

pno

In(2) 2" (ZiZo mitnody) .
least O ( ) . With balanced parameters, d, and the m;

are O(p7), thus the total complexity is indeed Exp(O(p3)). Note that when H’
and @’ are random aside from the sparsity constraint, the probability that the
supports of H' and @’ contain the supports of H and @ respectively does not
depend on H and @, so the structured ISD algorithm is asymptotically better
than the unstructured ISD algorithm, even when we ignore weak keys.

These asymptotics however are not in and of themselves surprising. The very
simple attack which simply tries to enumerate all the possible values of H and
Q is also asymptotically Exp(é(p%)). However, in this section, we show that for
average keys, there are some proposed parameter sets in the Round 2 version of
LEDAcrypt where we obtain a significantly improved concrete attack complexity
by using a structured information set. To create the structured information set
we will choose H' and Q' which is intermediate between the completely random
and sparse distribution used to compute asymptotic complexity of the approach
in the average case, and the denser, but decidedly nonrandom distribution used
to attack extreme weak keys. As an exact calculation of the performance of the
attack will be very difficult and perhaps infeasible, the analysis in this section will
be more heuristic, and will aim to give a rough upper bound on the complexity
of the structured ISD attack in the average case.

The parameter set we will focus on is the category 5 CPA parameter set from
the Round 2 LEDAcrypt submission, namely p = 36877;ng = 2;d, = 11,m =
(7,6). We will estimate the complexity of both the standard ISD attack with
a random information set and the structured information set attack by using a
simplified model of advanced ISD algorithms, where the cost of an iteration is
p3 and the iteration succeeds whenever 6 or fewer bits of a row of L are inside
the information set. Using this model to estimate the cost of the unstructured
ISD attack for key recovery, we multiply the cost per iteration, p3, by the prob-
ability of success per iteration. The probability of success is the probability that
one of the p rows of L, which has weight w = 2 % 11 % (7 4+ 6) = 286 has at
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most 6 of its supports inside the information set. This probability is approx-
imately pZ?:O (7;”) - 27", This gives a complexity for the standard attack of
- ZGL(“’) ~ 2277 This is quite close to the complexity of 228! bit operations
i=0 \ %
claimed by the LEDAcrypt submission for the cost of the BJMM ISD algorithm
as applied to key recovery for this parameter set. The discrepancy is likely due
to some small constant factors we are ignoring in our analysis. For a fair compar-
ison between structured and ISD, we will use our simplified method to estimate
complexity for both the standard ISD attack and the unstructured ISD attack.

Our analysis of the structured information set attack will proceed as follows:
First we will describe a distribution of information sets used in a version of the
attack. Then, we will describe a possible scenario where the attack will succeed
and compute the expected probability per iteration that the scenario obtains. In
computing this probability we will take note of the factors in the computation
of the probability of success that are dependent on the private key. In showing
that these factors are large, i.e. = %7 we will be demonstrating that the high per-
iteration success probability relative to randomly chosen information sets does
not depend upon the private key being chosen from a rare class of weak keys.
Once we have demonstrated this and given a lower bound on the per iteration
success probability we use this to compute an upper bound on the average case

complexity for the attack.

We will choose the information set as in previous versions of the attack by
choosing structured polynomials H' and @' and letting the information set be
the anti-support of L' = H’Q’. In this case, we will structure our information
set as follows:

HY, will be chosen with d, = 6 chunks of consecutive nonzero bits in one ring
representation. Qg o will be chosen with mg = 5 chunks of consecutive nonzero
bits and @ ; will be chosen with m} = 5 chunks of consecutive nonzero bits,
both in the same ring representation as used for Hj.

Likewise H{ will be chosen with d], = 6 chunks of consecutive nonzero bits in
an independently chosen ring representation from the one used for H). Q’Ll will
be chosen with m{ = 5 consecutive nonzero bits and @} o will be chosen with
m) = 5 consecutive nonzero bits, both in the same ring representation as used
for Hj.

We will set the length of each consecutive chunk of nonzero bits to be
equal to a quantity B that we compute so that the anti-support of a row of
the matrix representation of H'Q’ is expected to have weight p. The product
H'Q’ will contain two cyclic blocks, each of which will have rows containing
d,,(m{, + m}) = 30 chunks of size 2B — 1 in one ring representation and 30
chunks of the same size in another ring representation. As these chunks may po-

tentially overlap, the expected Hamming weight of the product is approximately
60(2B—1)

236877 (1 — e~ " 36877 ) We can use this together with the requirement that

the information set needs to be of size p = 36877 to bound B, resulting in the

requirement 2B — 1 < 36877In(2)

5o - This gives a maximum chunk size of B = 213
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The scenario we will consider for successful key recovery will be as follows:
Assume the nonzero bits of Hy are clustered in some ring representation, which
we denote Rep,, such that 4 pairs of nonzero bits are close enough that each pair
will fit in a block of size B. Assume 1 pair of nonzero bits of ()¢ o are close enough
to fit in a single block of size B also in Rep,. Likewise, assume the nonzero bits
of H; are clustered in some other ring representation, Rep;, such that 4 pairs of
nonzero bits are close enough that each pair will fit in a block of size B. Assume
1 pair of nonzero bits of (1,1 are close enough to fit in a single block of size B
in Rep;. We call this the Clustering Assumption.

Our attack succeeds when, for H, Q) or some equivalent private key,

1. Hj,Qp o, and Qp ; are chosen using Rep,

. Hi,Q} o, and Q] ; are chosen using Rep;.

3. The close pairs of nonzero bits of Hy, Hi, Qo0, and (1,1 are each con-
tained within a consecutive chunk of nonzero bits in Hj), Hy, Q o, and Q ;
respectively.

4. All but one of the remaining nonzero bits in each of Hy, Hi, Qo,0, Qo,1, Q1,0
and (1,1 are contained within a consecutive chunk of nonzero bits in Hj),
Hy, Q000 Q0,17 @10 and @7 ;.

5. At least 60 of the 66 nonzero bits of L not guaranteed to be contained within
the support of L’ by the above considerations, nevertheless happen to fall
inside the support of L'.

[\]

We first examine the clustering assumption (which is dependent on the pri-
vate key). There are several ways in which the support of H could be contained
in the support of H’, but we initially consider the case that 4 pairs of bits of H
are clustered within regions of (cyclic) size < 213. This occurs with probability
2712, See appendix [B.4 for details. The probability that at least one pair of the
nonzero bits of Qoo cluster together is (6 +5+4 + 3 + 2 + 1)55t ~ 1. Thus
we expect about @ .9712. % ~ 1 of the @ distinct ring representations to

meet our criteria.

5.1 Conditions 1,2

Now we now examine, given the clustering assumption holds, the probability that
either Hj or Hj is chosen using representation 0 while the other is chosen using
representation 1. (Because in designing our attack we have set m{, = m} (= 5),
we get the same distribution of information sets either way.) There are % ring
representations with a different notion of consecutivity. Thus the probability is
approximately ﬁ.

5.2 Conditions 3,4

Given our criteria are met regarding the ring representation, we can estimate the
probability that six of the seven regions containing nonzero bits of Hy, and all
four of the regions containing a pair of bits, are contained within a nonzero chunk
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of H{.. The nonzero regions may match with the nonzero chunks in any order.
Therefore, the probability contains a factor of 6!. Additionally, any of the three
unpaired bits in Hy may be the one not covered by a chunk of nonzero bits in
HY,. Therefore, the probability contains an additional factor of 3. The probability
that a given chunk covers a given region with one nonzero bit is %, while the
probability a chunk covers a region with two nonzero bits is (on average) half
of this figure, i.e. ;gg;r;, since we expect such regions to be uniformly distributed
in size from 2 to 213 yielding probabilities that uniformly range from 3§§$7 to
ﬁ. Thus, our probability of covering Hy with H|) given a ring representation
meeting our criteria is 6!-3- 3(23;?76 -274, The same probability holds for matching
H, with Hj given an appropriate ring representation.

Likewise, given our criteria are met regarding the ring representation, we can
estimate the probability that five of the six regions containing nonzero bits of
Qo,0, including the one containing a pair of bits, are contained within a nonzero
chunk of Q6,0~ The nonzero regions may match with the nonzero chunks in
any order. Therefore, the probability contains a factor of 5!. Additionally, any
of the five unpaired bits in Qo may be the one not covered by a chunk of
nonzero bits in (g o. Therefore, the probability contains an additional factor of
5. The probabilities for a given region to be covered by a given chunk are the
same as above. Thus, our probability of covering Qoo with Qg given a ring

representation meeting our criteria is 5! -5 - 3257 271, The same probability

holds for matching ;1 with Q’l)l given an appropriate ring representation.
We now estimate the probability, given our criteria are met regarding the ring
representation, that five of the six nonzero bits of Q)y,1 are contained within a
nonzero chunk of Q{L 1- The nonzero regions may match with the nonzero chunks
in any order. Therefore, the probability contains a factor of 5!. Additionally,
any of the six unpaired bits in (p,; may be the one not covered by a chunk of
nonzero bits in Qg ;. Therefore, the probability contains an additional factor of
6. The probabilities for a given region to be covered by a given chunk are the
same as above. Thus, our probability of covering Qo1 with Qf ; given a ring

representation meeting our criteria is 5!- 6 - %5. The same probability holds

for matching Q1,0 with Q’LO given an appropriate ring representation.

5.3 Condition 5

This leaves us to calculate the probability that at least 60 of the remaining 66
bits of L fall within the support of L’. As L’, by construction has density % we
may approximate the probability that this occurs as Y i = 0° (61.6) 2766, This is
in fact an underestimate; due to the clustering assumption, and the correspond-
ing assumptions regarding the ring representations used for the construction of
L', the probabilities for some bits in question of L and L’ overlapping are signifi-
cantly correlated, making the above scenario more likely than it would be under
the assumption of independence.

It should however be noted that this probability includes a factor dependent
on the private key. We must check the probability for a given private key that
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it is possible, given the satisfaction of Conditions 1-4 in our scenario for the
fifth to hold. We estimate this probability by trying to characterize the degrees
of freedom in choosing information sets consistent with the first four success
conditions. First, there is a degree of freedom due to the fact that we have 3
choices for the uncovered bit in each of Hy and Hy, 5 choices for the uncovered
bit in each of Qo0 and Qo 1, and 6 choices for the uncovered bit in each of Qg 1,
and Q1,9. This gives 3% % 52 x 62 = 8100 essentially independent chances for a set
of 66 bits to satisfy the fifth condition.

There are additional degrees of freedom, due to the fact that we may shift the
locations of each chunk of H' or Q' that covers a single bit of H or () to reach any
of up to 2B —1 different additional bit positions, and we may shift the locations of
chunks of H' and Q' covering pairs of bits to reach any of up to 1.5B—1 additional
bit positions on average. This means that we expect 2p(1—e~ 21731.%”“3) ~ 52613
of the 2p = 73754 bits of L to be reachable by an L’ consistent with the choices
of bits of H and Q covered by H' and @'. This gives a probability of 0.71 that
each of the 66 bits in question will be reachable, and consequently a probability
of Z?:o ((Giﬁ) -0.7156770.29%) ~ 8.3 x 107° that at least 60 of them will be
reachable. This is a low probability, however, as stated before we have 8100
opportunities. Thus, accounting for all degrees of freedom, the probability that
a given L can be covered by an L’ meeting conditions 1 through 5, given that
conditions 1 through 4 are met is 1 — ¢~8100:8:3x107" ~ (.47 This is in fact
likely to be an underestimate of the probability due to correlations between the
probabilities various of the bits are reachable. Nonetheless, it is sufficiently high
to illustrate that the attack works for typical private keys.

Finally, we must account for equivalent keys. All the probabilities we con-
sidered up to this point were based on the assumption that it was H and () rather
than some equivalent key (2% Ho, v® H1,27"%Qo.0, 77" “Qo.1, 2" ?Q1,0,27PQ1 1)
that was being (mostly) covered by H’ and @Q'. The success probability is in-
creased by a full factor of p due to the degree of freedom ~. This degree of
freedom corresponds to a cyclic shift of each block of the information set. Due
to the use of two different ring representations in constructing that information
set, it is very likely that any shift will be large in at least one of the two ring
representations and will completely change what bits of L are covered by L.
The other two degrees of freedom are not so easy to analyze, but we can see
that shifting o only affects whether H or @ is covered if a nonzero bit of Hy,
Qo,0 or Qo1 enters or leaves the support of H' or Q'. 2(d, +mg + m}) = 32 bits
enter or leave for every shift from one value of o to the next consecutive value
in the appropriate ring representation. However, only d, + mg + m; = 24 of the
3p bits of Hyp, Qo,0 and Qo1 are nonzero. Thus we only expect % = 256 of
the p possible cyclic shifts of « to result in independent outcomes. Likewise for
5. So, considering equivalent keys increases our success probability per iteration
by about 2562 - p.
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5.4 Putting it all together

We thus derive an approximate lower bound for the average-case per-iteration
probability of key recovery with our structured information sets of:

1 2 6
8 213 1 66\ 1 1
———3:5.6-60-50.51 () 6] > — - 256°p ~ -
(p—1)2 ( (36877) 25> ( i ) 266 P om

=0

Estimating a cost of 245 bit operations for each iteration gives a cost of at
most 2259 for attacking average keys, which is less than the estimated cost of 2277
for unstructured ISD. Note that we only considered one scenario by which our
structured information sets might recover the private key, and there are several
similarly probable scenarios which may also occur, so the real cost is probably
less than our estimate. This demonstrates that for real parameters of interest,
our attack affects average case security and not just a class of weak keys that
might be removed by more aggressive rejection sampling. Due to the complexity
of calculations involved, ruling out similar attacks via rejection sampling will be
quite difficult.

6 Conclusion

In this work, we demonstrated a novel, real-world attack against LEDAcrypt —
one of 17 remaining 2nd Round candidates for standardization in NIST’s Post-
Quantum Cryptography competition. The attack involved a customized form
of Information Set decoding, which carefully guesses the information set in a
non-uniform manner so as to exploit the unique product structure of the keys in
LEDAcrypt’s design. The attack was most effective against classes of weak keys
in the proposed parameter sets asserted to have 256-bit security (demonstrating
a trade-off between computational time and fraction of the key space recovered
that was better than expected even of a 128-bit secure cryptosystem), but the
attack also substantially reduced security of all parameter sets similarly.
Moreover, we demonstrated that these type of weak keys are present through-
out the key space of LEDAcrypt, so that simple “patches” such as rejection sam-
pling cannot repair the problem. This was done by demonstrating a continuum
of progressively larger classes of less weak keys and by showing that the same
style of attack reduces the average-case complexity of certain parameter sets.
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A Preliminaries

A.1 Overview of LEDAcrypt: QC-LDPC codes

The 2nd Round submission to NIST’s PQC standardization process, LEDAcrypt,
includes a key-encapsulation mechanism (KEM) built from the Niederreiter cryp-
tosystem (LEDAcrypt KEM) and a public-key encryption (PKE) scheme built
from the McEliece cryptosystem (LEDAcrypt PKC), both based on linear error-
correcting codes. LEDAcrypt crucially is built on top of QC-LDPC codes, or
Quasi-Cyclic Low-Density Parity-Check codes. We briefly survey the construc-
tion of such codes (with emphasis on the details of LEDAcrypt) for the reader.
A p X p circulant matrix A is a matrix of the form

ap a1 az - Gp—1
ap—1 Go Qi *-- Ap_2
A= [%p-20p-10Q0 " Ap-3|
ajq s as--- Qo

that is, all of the rows (resp. columns) are cyclic shifts of the first row (resp.
column).
A Quasi-Cyclic (QC) matrix is a matrix of the form
Boo Boax -+ Bow-1

s

Bioy DBigx -+ Biw-1

s

B =
Bzfl,O Bzfl,l e Bzfl,wfl

for two positive integers w and z, where each B; ; is a circulant matrix.

The set of p X p binary circulant matrices forms a ring under matrix addition
and multiplication modulo 2. The algebra of the polynomial ring Fo[x]/{zP + 1)
is isomorphic to the ring of p x p circulant matrices over Fs.

Binary error correcting codes use a redundant representation of information
primarily to detect and correct bit errors that occur during transmissions or
storage. Let F5 denote the k-dimensional vector space defined on Fy. A binary
code, denoted C(n, k), is defined as a bijective map C(n, k) : F§ — F3 n,k €
N,0 < k < n between any binary k-tuple (called an information word) and a
binary n-tuple (called a codeword). We call n the length of the code and k the
dimension of the code.

Encoding via C(n, k) converts an information word u € F% into a codeword
¢ € F3. Given a codeword ¢ = ¢ + e corrupted by an error vector e € Fy with
Hamming weight ¢t > 0, decoding aims to recover the original information word
u and the error vector e. A code is called t-error-correcting if, for any value of
e of Hamming weight ¢, given ¢ there is an efficient decoding procedure that
retrieves (u, e). Further, the code C(n, k) is linear if and only if the set of its 2%
codewords is a k-dimensional subspace of the vector space 5.
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For any linear code, there are two equivalent descriptions of the code that
are critical to its use: the generator matrix G and the parity-check matrix H.

Given a linear code C(n,k) and the vector subspace I"' C F} containing
its 2F codewords, it is possible to choose k linearly independent codewords
{90,915 --s gk—1} € FY to form a basis of I'". That is, any codeword ¢ = (¢, €1, ..., Cn—1)
can be written as a linear combination of the basis vectors; i.e.

c=1upgo +u1g1 + ... + Up—19K—1

where the u; € {0,1} are the representatives of u = (ug,u1,...,ux—1) that the
code maps into c¢. This can be re-written as ¢ = uG, where G is a full row rank
k x n binary matrix; i.e.
9o
91
G= .
Jk—1
The set of all n-bit vectors in F5 that are orthogonal to any codeword of
the code subspace I is its orthogonal complement I'*. Its dimension is dim(I'+)
=n—dim(T') = n — k = 7. A basis of I'* is similarly obtained by sampling r
linearly independent vectors in I'*+ and writing

ho

hy
H=| .
hrfl

The r x n matrix H is known as the parity-check matrix of the code C(n, k), and
for any n-bit vector x € F%, the rx 1 vector s = Ha” is known as the syndrome of
x through H. Note that every codeword ¢ € I satisfies the equality Hc? = 0,.1;
that is a codeword belonging to C(n, k) has a null syndrome through H.

A QC code is defined as a linear (block) code C(n, k) with information word
size k = p- ko and codeword size n = p-ng, where nq is the basic block length of
the code and each cyclic shift of a codeword by ng symbols gives another valid
codeword. LEDAcrypt relies on a QC code C(p-no, p-ko) where the generator and
party-check matrices are composed of p x p circulant sub-matrices (i.e. blocks).

A Low-Density Parity-Check (LDPC) code C(n, k) is a special type of linear
block code characterized by a highly-sparse parity-check matrix H. In particular,
the Hamming weight of a column of H, denoted d,,, is significantly smaller than
its length r and in fact decreases sub-linearly with it. LEDAcrypt is based on
a QC-LDPC code customized to the security levels targeted by NIST’s PQC
standardization process.

A.2 Overview of LEDAcrypt’s QC-LDPC code-based Niederreiter
and McEliece cryptosystems

We briefly review the relevant portions of LEDAcrypt’s QC-LDPC-based, public-
key encryption algorithms, McEliece IT"E = (KeyGen"*® Enc"® Dec"*®) and
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Niederreiter 1TV = (KeyGen"° Enc"*°® Dec™®). In LEDAcrypt, IT"F is used
to construct an IND-CCAZ2 public-key encryption scheme via the KI-y transfor-
mation of Kobara-Imai [13] in the ROM, while I7¥¢ is transformed via HHK [11]
to produce an IND-CCA key-exchange mechanism in the ROM (and QROM).

However, our attacks will aim to recover the secret key of these cryptosys-
tems from their public keys alone. That is, the form of encryption, decryption,
encapsulation, and decapsulation will be immaterial here. Therefore, we will fo-
cus only on the underlying KeyGen algorithms, which are substantially similar
(admitting the same form of attack). In particular, both key generation algo-
rithms consider an appropriate QC-LDPC code C(n, k), have the same secret
key material, but differ in whether they output a public key in the form of a
parity-check matrix or a generator matrix systematic form.

Let perm(-) denote the permanent of a matrix. Let w(-) denote the number
of nonzero coefficients of a polynomial (its weight). Note that if 2 is a primitive
element of Z,, then its order ord,(2) is equal to the order of the multiplicative
group of the field; i.e. ordp(2) =p — 1.

Both cryptosystems’ key generation algorithms rely on the following fact.

Fact A.1. [{, ¢f. Theorem 1.1.14] Let p > 2 be a prime such that ord,(2) = p—1
and Q is an ng X ng matriz of elements of Fo[x]/{aP 4+ 1). If perm(w(Q)) is odd
and perm(w(Q)) < p, then Q is non-singular.

Key Generation. Now we describe the KeyGen algorithm(s).

Fix a code C(n, k). Let the codeword length be n = p-ngy and the information
word length k = p(ng — 1), where ng € {2,3,4} and p is a prime number such
that ord,(2) =p — 1.

1. (H,Q) + GenHQ(seed) : Find two random binary matrices corresponding to
the secret quasi-cyclic p X p-ng parity-check matrix H of a given QC-LDPC
code and also a p - ng X p - ng quasi-cyclic sparse binary matrix Q.

— Note that H = [Hy, ..., Hp,—1], where each H; is a p X p circulant block
with w(H;) = d,, for 0 <14 < ng.

— Note that @ is an ng x ny block matrix with w([Q;.0, ..., Qing—1]) = m
for 0 < i < nyg.

2. Compute L := H - Q.
— Writing L = [Lo, ..., Ln,—1], note that each L; = >, H;Q; ; isa p x p
circulant block.

3. If there is an index j so that w(L;) # d, x m, start over.

4. For i =0 to ng — 2, compute M; := (Ly,—1) ' L;.
— M is thus the parity-check matrix in systematic form and from this, the
systematic generator matrix can easily be derived. Note that each M; is
a p X p circulant block.

5. Output public key pk"*® = [My|...|M,,,_2|I,] and secret key sk"*® = (H, Q).
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In the case of McEliece style key generation, the final output is sk"* = sk"*®
and pk"® = [I,,,o—1)|[Mo|...| Myy—2]"], where I; denotes the ¢ x ¢ identity matrix.

Finally, the parameter sets of LEDAcrypt that we explicitly consider in this
work are shown in Table [4| (although similar forms of our results hold for all
parameter sets).

INIST Category[Security Type[ P [dv[m0[m1[no‘
1 (128-bit) IND-CPA 14,939 (11| 4 | 3 |2
5 (256-bit) IND-CPA 36,877 (11| 7| 6 |2
5 (256-bit) IND-CCA 152,267|13| 7 | 6 | 2
Table 3. LEDAcrypt parameter sets that we consider in this paper.

A.3 The standard attack: Information Set Decoding

Decoding an error-affected codeword for random codes is known to be an NP-
complete problem. [5]. The best known decoding algorithms which do not exploit
code structure are based on information-set decoding (ISD), an approach intro-
duced by Eugene Prange in [26]. The technique requires finding a large set of
error-free coordinates in a noisy codeword vector such that the corresponding
columns of the generator matrix form an invertible submatrix. The indices of
the error-free coordinates are known as the information set I.

Let G be a generator matrix of a code C. Let I be an information set such
that G restricted to I, denoted Gy, forms an invertible submatrix. Let m be an
information word and ¢ = mG + e, a noisy codeword. Then ¢; = (mG +¢e); =
(mG); +er = (mG)r, and m can be recovered by computing ¢y -G;* = (mG);g -
G;l. This essentially outlines a message recovery attack.

The McEliece and Niederreiter cryptosystems use error-correcting codes such
that the public key is a random-looking representation of a code, while the secret
key is a representation of the same code that allows efficient decoding. In the
case of LEDAcrypt, the dual of the public code contains low-weight codewords
that coincide with the rows of the sparse parity-check matrix of the public code.
Recovering a sparse parity-check matrix of the code allows for efficient decoding,
and can thus be considered a key recovery attack.

A modified version of ISD can be used to to recover low-weight codewords
from the dual of the public code. In the case where ng = 2, one must select a
subset of half the columns of L so that the support of a row of L is outside of
those columns. If successful, then the row of L can be recovered by simple linear
algebra and recognized as the private key by having low hamming weight. Many
improvements of Prange’s ISD algorithm have been published, and in particular
the series of improved ISD algorithms from [29] to [20] can be used to recover
low-weight code words from the dual of the public code with little additional
cost, when the subset of half the columns of L is instead chosen so that no more
than 4-6 of the support columns of a row of L are within the chosen subset.
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A.4 Sparse polynomials

We now recall some basic fact about polynomial multiplication in the rings
Folz]/{xzP 4+ 1) and Z[z]/{zP — 1), which will be useful for our treatment.
Let a,b € R and ¢ = ab; we then have

p—1

:@azbz/, 7 =i—2z mod p,

z=0

where the operator @ highlights the fact that the sum is performed over Fs.
Taking into account antisupports, we can rewrite the previous equation as

p—1

ci = @ a.b,. (7)

2¢5(a)
2'=i—2z mod p, 2z’ ZS(b)

B Proofs

B.1 Proof of Theorem [3.3]

Proof. Let Iy be the location of the first nonzero bit of HyQo,0 + H1Q1,0, 1 the
location of the first nonzero bit of HyQo1 + H1Q1,1. Let jo,j1 be the first non
zero bit of Hy, Hy, respectively. Suppose that the nonzero bits of Hy, H; are
located within a block of length Ag, A1, respectively.

Once jy is fixed, there are two blocks of () which may influence the location
lo. If lp is influenced by Qg , there are (%;;43?1) arrangements of the bits of

Qo,0 and ( Al 1) possible arrangements of the bits of Q1. Otherwise, if Iy

is influenced by Q1,0, there are ( —Ao—1 ( ‘1411 1) arrangements of Qo 0, Q1.0,

respectively. A similar calculation holds for the locations of l1 once j; is fixed.
Summing over all jg, Ag, j1, 41, o, 1 we obtain

b

p—1 0o—1 2 (A -1
A ()E X (o)
jo=0 Apg=d, Jj1=0 A1 =d,
-1
”Z B Ag—1\(B—-A -1 N B Ag—1\(B-4,-1
o mo—l mi mo m1—1
-1
pZ: B A —1\(E-4 -1 N B—Ao—1\(F-A -1}
mg—l mq mo—l mo
l1:O
Simplifying the expression, the result holds. U
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B.2 Proof of Theorem [3.4]
Proof. The expressions in (3l4)) are approximately equal to

B Mg 1\ (5= A1\ (L= Ag—1) (LA~ 1\
mo mi my mo

( m02 +m12 moma moma >
(5 —A0)(z —A)  (3—-40)2  (5-4)

Applying the same approximations as in the proof of Theorem [3.2] we rewrite
expressions (243ll4) as

2 2 2
P_1p2 p p P
2 mo mi dU—Q

>3 (A (G (A

Ay A1=0

m02 + m12 mopmq momy
<<—Am—m> u—Am2*@—Am>

1p2<p>2<p)2(p)2 dy?(dy — 1)°
mo m dy) (p—dy+2)%(p—d, +1)2

A e o) ()
=0 2
< m() +m1 mommy mopimi )dxdy

G-0G-v G-2F G-y

Dividing by (2)*(,2,)*(,%.)”, the result follows. 0

mo

[N

B.3 Proof of Lemma [4.3]

Proof. Let a and b be the polynomials obtained by lifting a and b, respectively,
from Fao[x]/(aP 4+ 1) to Z[x]/{(aP — 1). Since ¢ = ¢ mod 2, we have

wt(c) =wt(e) — [{j €{0,--- ,p—1} s.t. & >2}].
Since wt(c) = wawp , by hypothesis, and wt(¢) < w,wp, this means that
H{je{0,---,p—1} st. & >2} =0.

Then, the coefficients of ¢ take values in {0,1} C Z, and exactly wqwpy out of
them are equal to 1.

We now define N(c}) analogously to N(c¢;), i.e., N(c;) contains all indices £
such that £ € S(a’) and £ — ¢ mod p € S(V'); clearly N(¢;) C N(c}). Then, each
¢, is obtained as the sum of exactly ¢; products in the form ayb,, for proper
indices £ and w. We can then consider the i-th coefficient of ¢’ as the sum of ¢
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values which, because of the condition on the maximum weight, are either all
null, or all null expect one.

With a combinatorial perspective, we can describe the computation of ¢}
through an urn experiment, containing M balls of two colors. Balls of the first
colors correspond to coefficients agb,, = 0, while balls of the second color corre-
spond to coefficients agb, = 1. For the i-th coefficient in ¢/, we randomly extract
¢, balls, with the restriction that either zero on one ball of the second color can
be selected. The number of balls in the urn, which we denote with M, equals the
sum of coeflicients in ¢, i.e., the cardinality of Uf;ol N(c}); since all such sets
are disjoint, we have M = Zf;ol ¢, = |Ja| - |Jp|. We have M — w balls of the first
color and w = wt(c) = wawp of the second color. For the i-th coefficient in ¢/, we
extract ¢ balls: if all of them are of the first color, then ¢, = 0, otherwise ¢} = 1.
The number of favourable events for having ¢, = 0 is then obtained as (AICT“’),
while the number of possible extractions, taking into account that a maximum
of one ball of the second color can be selected, is equal to (MCT_W) + w(];/,[:;")
Dividing these these two quantities and simple computations yiéld the formula
in the statement of the Lemma. O

B.4 Counting close pairs of bits

The clustering assumption holds when there are at least four pairs of bits of
H that are located within a stretch of 213 consecutive indices. To capture the
probability of this event, we consider the 11 nonzero bits being sampled one at
a time. Let NV, , capture the probability that after = bits have been sampled, y
close pairs of bits are formed.

Suppose the first bit is sampled. The probability that this forms zero pairs
of bits is 1. Then N; g = 1.

The second bit is sampled. The probability that this forms one pair of bits

within a span of 213 is % and the probability that this second bit does not
form a pair is 1 — %. Then N3 = 4%, Noog=1-— %, respectively.

The third bit is sampled. The probability that this forms two pairs of bits is
0. The probability that this forms one pair of bits is 24%4 and the probability that
this third bit forms zero pairs of bits is 1 — 2%. Then N3 ; = 0.0334275, N3 o =
0.9665725, respectively.

Continuing in this way, we find that Ni; 4 = 0.000232026 ~ 2712 and Niis =
0.000001655 =~ 2712, A complete table of values is given below.

C Constructing information sets
For the sake of completeness, in this Appendix we provide a procedural descrip-

tion of the methodology that, in Section [d] is used to define information sets for
a chosen families of weak keys. Such a procedure is depicted, in Algorithm [T}
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(5]

ly=0 | y=1 [ y=2 y=3 y=4 y=>5
1 N

0.98877349(0.01122651 - - - -
0.96657254|0.03342746 - - - -
0.93401883|0.06560589/0.00037527 - - -
0.89207575(0.10607593(0.00184832 - - -
0.84200126/0.15257783|0.00540016|0.00002075 - -
0.78528485(0.20244257(0.01213058|0.00014200 - -
0.72357279(0.25279101]0.02308564|0.00054896 |0.00000159 -
0.65858722|0.30074882|0.03907672|0.00157332(0.00001392 -
0.59204449|0.34365703|0.06051776|0.00371380(0.00006675(0.00000016
11]0.52557856|0.37925841|0.08730590|0.00762345|0.00023203|0.00000166
Table 4. Probabilities of x bits forming y close pairs

OO O | W N —

—
o

Algorithm 1 Constructing information sets for LEDAcrypt weak keys with
nog = 2
Input: sets Ju,, Jo,, JQo.0> JQo.15 J@1.0>J@11 € {0,1,--- ,p — 1}, such that
Jmu, has cardinality Bm, and Jq, ; have respective cardinalities By, and
Bq, ,;,fori=10,1and j =0,1.
Output: sets Tp, 71 € {0, - ,p — 1}, with cardinality Z.

1: fori < 0 to 1do
2 H; « polynomial with support Jg, and coefficients over {0,1} C Z
3 for j <0 to 1do
4: Q;,; + polynomial with support Jg, ; and coefficients over {0,1} C Z
5: end for
6: end for

7: for i< 0 to 1do

8: for j <+~ 0 to 1do

9: L ; < H;Qj ; € Z]z]/(z? — 1)

10: end for
11: end for

12: for i< 0 to 1do
13: L, = L/O,i + L/Li

14: m; < permutation such that wi(Lg) has non decreasing coefficients
15: T; « first £ coefficients of T;
16: end for

17: return {To,T1}

38



	Cryptanalysis of LEDAcrypt

