Standards for Post-Quantum Cryptography

Yi-Kai Liu / NIST PQC team

http://indianajones.wikia.com/wiki/Raiders_of_the_Lost_Ark

Quantum Computers

- Quantum mechanics
 - Behavior of small objects: atoms, electrons, photons
 - Quantum superpositions: $|\psi_{cat}\rangle = |alive\rangle + |dead\rangle$, $|\psi_{qubit}\rangle = |0\rangle + |1\rangle$
 - Interference: combine $|0\rangle + |1\rangle$ with $|0\rangle |1\rangle$, get $|0\rangle$
 - When an object is observed, the quantum superposition collapses
 - This is why large objects do not behave quantumly
 - Major challenge in building a quantum computer

R.Blatt & D. Wineland, Nature 453, 1008-1015 (19 June 2008)

Quantum Computers

- Potentially much more powerful than classical computers
 - Conjecture: A classical computer needs exponential time to simulate a quantum computer (in the general case)
- Exponential speedups for some interesting problems
 - Simulating the dynamics of molecules, superconductors, photosynthesis...?
 - Factoring large integers (Shor's algorithm)
 - Discrete logarithms in any abelian group (Shor's algorithm)
- And some polynomial speedups

- Unstructured search (Grover's alg.), collision finding

Who Cares?

- Quantum computers would break most of our publickey crypto
 - RSA, Diffie-Hellman key exchange, elliptic curve crypto
 - TLS, digital certificates, IPSec
- Symmetric crypto would be affected, but not broken
 - "Keep using AES, but double the key length"
 - (Actually, it's more complicated than that)

Who Cares?

- Fortunately, large quantum computers don't exist yet
 - Small ones do exist, but can they scale up?
 - Michele Mosca (http://eprint.iacr.org/2015/1075):
 "1/2 chance of breaking RSA-2048 by 2031"
- Unfortunately, 2031 is not that far away
 - How long does today's data need to remain secure?
 5-10 years?
 - How long does it take to deploy new crypto software?
 5-10 years?

Post-Quantum Cryptography

Cryptosystems	Hard problem	Trapdoor
Lattice-based	Finding short vectors in a high-dimensional lattice	Nice basis for the lattice (short, almost-orthogonal vectors)
Code-based	Decoding a random binary linear code	Linear trans- formations that reveal structure of the code
Multivariate	Solving a random system of multivariate quadratic equations over a finite field	Linear trans- formations that reveal structure of the equations

Post-Quantum Cryptography

Hash-based signatures

- Simple: uses only a hash function, doesn't need a trapdoor
- Caveat: signing algorithm has to update an internal data structure every time it signs a message
- Isogenies of supersingular elliptic curves
 - Useful for key exchange?
- Quantum key distribution
 - Information-theoretic security
 - Requires optical fiber, distance limited to ~200 km

Post-Quantum Cryptography

- How do we know a cryptosystem is secure?
 - Cryptanalysis: what are the best known attacks?
 - Security proofs: based on some hardness assumption?
- How well do these cryptosystems work in practice?
 - Size of keys, time needed for each operation
 - Ease of implementation, how to set the parameters
 - Does it fit nicely with TLS, other higher-level protocols?
 - Vulnerabilities to side channel attacks?
- There's a conference about this:

Lattice-Based Cryptography

Lattice-Based Encryption Schemes

NTRUEncrypt

Developed circa 1996 by Hofstein, Pipher and Silverman, commercially available

• Regev's encryption scheme

- Based on LWE problem ("learning with errors") (2005)
 - Solving a noisy system of linear equations modulo p
- Theoretical security guarantees
 - Solving average-case instances of LWE is at least as hard as solving worst-case instances of SIVP ("lattice short independent vectors problem")
- When instantiated with ideal lattices, this looks sort of like NTRUEncrypt
 - Ideal lattice: an ideal in a ring, for example, Z[X] / (Xⁿ+1)
 - This gives smaller key sizes, without compromising security?

LWE Problem ("learning with errors")

- Secret s in (Z_q)ⁿ
 q = poly(n)
- Given samples (a,b) in $(Z_q)^n \times Z_q$
 - a is uniformly random
 - b = a^Ts + e, where e is Gaussian distributed, w/ std dev q/poly(n)
- Can we determine s?
 - "Decoding a random linear code over Z_{a} "
- Claim: samples (a,b) look pseudorandom!

Regev's Encryption Scheme

- Private key: s in $(Z_q)^n$
- Public key: LWE samples (a_i, b_i) in $(Z_q)^n \times Z_q$ (for i = 1,...,m)
 - Where we let m ~ n log n
 - Recall $b_i = a_i^T s + e_i$
- Encryption: Given a single bit x in {0,1}
 - Choose a random subset S of {1,...,m}
 - Output $a = \Sigma_{i \text{ in } S} a_i$ and $b = (0.5)(q-1)x + \Sigma_{i \text{ in } S} b_i$
- **Decryption:** Given (a,b)
 - Compute $b a^{T}s = (0.5)(q-1)x + \Sigma_{i \text{ in } S} e_{i}$
 - Round this to either 0 or (0.5)(q-1), mod q
 - Output either x = 0 or x = 1, accordingly

Lattice-Based Signatures

- "Hash-then-sign" approach (GGH '97)
- Lattice L
- Public key: A "hard" basis B
- Private key: A "good" basis T (the "trapdoor")
- Signing: Given message m,
 - Hash it to a point x in \mathbb{R}^n
 - Find the lattice vector v in L that lies closest to x
 - Output (x,v)
- Verification: Given (m,x,v),
 - Check that m hashes to x, v is in L, and v is close to x

Lattice-Based Signatures

NTRUSign

- Developed circa 2003
- Broken by Nguyen and Regev in 2006 ("learning a parallelipiped")
 - each signature leaks some information about the secret key
- Patched by adding "perturbations" to the signatures

GPV signatures

- Uses "Gaussian sampling" (Gentry, Peikert, Vaikuntanathan, 2007)
 - Provably secure variant of NTRUSign, but less efficient
 - Based on SIS problem ("small integer solutions") random subset sum with vectors modulo p
 - Has worst-case to average-case reduction from lattice problems

Lattice-Based Signatures

- Signatures using Fiat-Shamir heuristic
 - More efficient than GPV approach
 - Provably secure based on hardness of SIS problem, in random oracle model
 - Lyubashevsky (2011), and several follow-on works...

Cryptanalysis

- Lattice basis reduction (in polynomial time)
 - Try to find a basis consisting of short, nearly-orthogonal vectors
 - LLL algorithm: finds a 2^{O(n)}-approximation to the shortest vector in the lattice
 - Block-KZ reduction, follow-on work by Schnorr, Nguyen...
- Sieving, enumeration (in exponential time)
 - Find the shortest vector in the lattice
 - Extreme pruning (Gama, Nguyen, Regev, 2010)
- Algorithms for LWE and SIS problems
 - List merging (Lyubashevsky, 2004)
 - Linearization (Arora, Ge, 2011)

Quantum Cryptanalysis?

- Quantum algorithms for problems in number fields
 - Unit group, class group, principal ideal problem
 - Running time is polynomial in the degree
 - (Eisentrager, Hallgren, Kitaev, Song, 2014; Biasse, Song, 2016)
- Quantum attack on the Soliloquy cryptosystem
 - (Campbell, Groves, Shepherd, 2014)
 - Commentary: <u>http://web.eecs.umich.edu/~cpeikert/soliloquy.html</u>
- Quantum speed-ups of classical lattice algorithms

- (Laarhoven, Mosca, van de Pol, 2013)

Issues and Open Questions

- Are ideal lattices just as hard as general lattices?
 - Clearly there is some additional structure there...
 - In the security proofs, we <u>assume</u> these problems are hard
- How hard are the LWE and SIS problems, for the parameters we use in practice?
 - Parameters are chosen based on experimental cryptanalysis
 - Worst-case to average-case reduction doesn't say anything meaningful in this regime
- How to implement Gaussian samplers?
 - Need good entropy, how to test this, what about discretization errors, need constant-time implementations to resist sidechannel attacks...