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Rene,
        I gave one talk on quantum-resistant isogeny based systems, which I’ve attached the pdf (and
the tex file I used to create it).  I also have all the graphics files if you need it.  The isogeny scheme
isn’t the only non lattice/coding-based/multi-variate/hash-based scheme, so maybe you could find
others to mention, although I don’t think many have received very much attention.  The only other
ones I can think of are the “permuted kernel problem” mentioned by Microsoft at our PQC
workshop (http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session7-shumow-
dan.pdf) and the conjugacy search problem in Braid groups.  There isn’t time to go into any details,
other than maybe just mentioning them>
 
I found one talk Daniel gave on his work in Multi-variate.  Much of it is probably too specialized, but
some of it could be useful.  I’m also trying to get some slides from a more introductory talk he gave
at the PQCrypto 2014 summer school.  A video of it is available at https://www.youtube.com/watch?
v=RlWscAAxtAI&feature=youtu.be, but it is over an hour long.  I found another set of his slides
(attached) for a talk he gave at Dagstuhl.  Finally, I found Jintai Ding’s talk he gave to the crypto-club
here at NIST, where he gave an introduction to multi-variate crypto. 
 
I hope Daniel will be able to talk, but if not I appreciate you being willing.  I’ve tried to divide up our
talk so that everyone will help out, and I don’t get stuck doing too  much.  Thanks!
 
 
Dustin
 
 

mailto:/O=EXCHANGELABS/OU=EXCHANGE ADMINISTRATIVE GROUP (FYDIBOHF23SPDLT)/CN=RECIPIENTS/CN=96E1F32F838F4256BD1F1033199F2B78-MOODY, DUST
mailto:/o=ExchangeLabs/ou=Exchange Administrative Group (FYDIBOHF23SPDLT)/cn=Recipients/cn=b041f4ff94334fc285a5fa844966a434-Peralta, Re
http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session7-shumow-dan.pdf
http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session7-shumow-dan.pdf
https://www.youtube.com/watch?v=RlWscAAxtAI&feature=youtu.be
https://www.youtube.com/watch?v=RlWscAAxtAI&feature=youtu.be



Outline


Background on Isogenies


Rostovstev and Stolbunov’s cryposystem


”Constructing elliptic curve isogenies in quantum
subexponential time,” (Childs, Jao, Soukharev) 2011


”Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies,” (Jao, de Feo)
2011
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Elliptic Curve
Let K be a field.
An elliptic curve E is a nonsingular curve of genus 1 with
at least one K -rational point.


Weierstrass form


E : y2 + a1xy + a3xy = x3 + a2x2 + a4x + a6.


Short Weierstrass form (char(K ) 6= 2,3):


E : y2 = x3 + ax + b.
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Isogenies


An isogeny φ is a non-constant homomorphism
between elliptic curves given by rational maps.
Examples:


I Let φ : E → E be defined by
φ(P) = P + P + ...+ P = [n]P, for some integer n.


I Let E be defined over Fp. Let π : E → E where
π(x , y) = (xp, yp). The isogeny π is known as the
Frobenius.


Given a finite subgroup F of E(K ), there is an
isogeny φ : E → E/F such that ker(φ) = F .
If |F | = `, then the degree of φ is `, and φ is an
`-isogeny.
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Vélu’s formula


Let E be an elliptic curve with finite subgroup F .
Then there is an isogeny φ from E with kernel F .
For P = (xP , yP) /∈ F , let


φ(P) =


(
xP+


∑
Q∈F ,
Q 6=∞


(xP+Q−xQ), yP+
∑


Q∈F ,
Q 6=∞


(yP+Q−yQ)


)
.


If |F | = `, then φ is known as an `-isogeny.
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Vélu’s formula - alternate version


Let φ be an `-isogeny, with ` odd.
Let


D(x) =
∏


∞6=Q∈F ,


(x − xQ)


= x`−1 − σx`−2 + . . .


= g(x)2.


Then φ(x , y) = (R(x), yR′(x)), with


R(x) = `x−σ−(3x2+a)
D′(x)
D(x)


−2(x3+ax+b)
(D′(x)


D(x)


)′
.


So φ is completely determined by D(x) = g(x)2.
g(x) is known as the kernel polynomial
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Applications


SEA algorithm - count number of points on an elliptic
curve over finite field
Distortion maps - needed for pairing-based crypto
Efficient point multiplication - key operation in ECC
Avoid ZVP attack
Random number generator
Isogeny volcanoes
Security - isogenies transfer Discrete Log Problem
between curves
Public key cryptosystems
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Ordinary and Supersingular


Let K = Fp


Then #(E(Fp)) = p + 1− t , for some t ≤ 2
√


p.
If p|t , then E is supersingular, otherwise E is
ordinary
Most elliptic curves are ordinary
Supersingular curves have more special properties
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Hard Problem


Tate’s Theorem: E1 is Fp-isogenous to E2 if and only
if #(E1(Fp)) = #(E2(Fp)).


Hard Problem: Given #(E1(Fp)) = #(E2(Fp)), find
an isogeny from E1 to E2.
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Isogeny Graphs
Fact: E1 and E2 are isomorphic if and only if
j(E1) = j(E2),


j(E) =
4a3


4a3 + 27b2 .


`-Isogeny Graph
I Vertices: j-invariants of elliptic curves
I Edges: Connect E1 and E2 if they are `-isogenous
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Isogeny Stars
Let E be an ordinary elliptic curve with
#(E(Fp)) = p + 1− t .
Let D = t2 − 4p. Let ` be a prime such that D is a
square mod `.
Choose parameters so that number of vertices is
prime.
Then the `-isogeny graph containing E is a cycle.
Example: Over F83, there are 7 curves with t = 9.
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Routes


There is a way to fix a direction on an isogeny star.
Let R`


i denote walking i steps on `-star


Key observation: R`
i R`′


j = R`′


j R`
i


Example:
I Start at 34, with i = 4, j = 3.


A step on a route is computing an isogeny.
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Rostovtsev and Stolbunov’s cryptosystem


Encryption:
I Agree on all parameters (Fp, `, `


′, t , etc...)
I Private key: route Rpriv
I Public key: curve E , and curve Epub = Rpriv (E)
I To send m, Bob picks random route Renc and


computes Eenc = Renc(Epub).
I Bob sends (s,E ′) to Alice, where s = m · j(Eenc) and


E ′ = Renc(E).
I Alice decrypts by computing j = j(Rpriv (E ′), and


m = s/j .
Diffie-Hellman-ish key exchange:


I E is fixed. Alice sends E1 = R1(E) to Bob. Bob
sends E2 = R2(E) to Alice.


I They can both compute Ekey = R1(E2) = R2(E1).
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Security


To break the system, given E1 and E2, need to find a
route R(E1) = E2.
– That is, compute an isogeny between E1 and E2.
Timings: For 128 bit security, ≈229 seconds to
encrypt/decrypt. (normal CPU)
The graph isn’t computable
Best attack is a meet-in-the-middle attack:
Galbraith’s algorithm, O( 4


√
p).


Mainly of theoretical interest.
Possible post-quantum cryptosystem.
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Childs, Jao, Soukharev


Quantum, subexponential algorithm to compute
(horizontal) isogenies.


Algorithm is Lp(
1
2 ,
√


3
2 +


√
2), with polynomial space


Assumes Generalized Riemann Hypothesis
Key Idea: reduce to Hidden Shift Problem
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Hidden Shift Problem


Let A be a finite abelian group, and S a finite set.
Let f0, f1 : A→ S be injective functions.
There is a hidden shift if


f1(x) = f0(xs)


for some s ∈ A.


Hidden Shift Problem (HSP)
Given A,S and f0, f1 with a hidden shift, find s.
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Representing Isogenies


Let φ : E → E ′ be an isogeny over Fp.
Recall #(E(Fp)) = #(E ′(Fp)) = p + 1− t . Let
D = t2 − 4p < 0.
Fact: When E is ordinary, End(E) is an order O in
K = Q(


√
D).


The isogeny φ is determined by E and ker(φ) (up to
isomorphism).
ker(φ) can be represented as an ideal b in O.


φ : E → Eb ←→ ker(φ)←→ b ⊆ OK
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Isogenies and Class Groups


φ : E → Eb ←→ ker(φ)←→ b ⊆ OK


Principal ideals (a) correspond to isomorphisms.
Thus, the class group acts on ordinary, isogenous
curves with the same endomorphism ring.
This defines an operator ∗


[b] ∗ j(E)→ j(Eb),


where [b] is the ideal class of b.
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Reducing Isogenies to HSP


Let φ : E0 → E1 be an isogeny.
Let b be the ideal corresponding to φ.
Let fi([x ])→ [x ] ∗ j(Ei), for i = 0,1.
Then


f1([x ]) = [x ] ∗ j(E1)


= [x ] ∗ ([b] ∗ j(E0))


= ([x ][b]) ∗ j(E0)


= f0([x ][b]).


Thus the isogeny problem reduces to the Hidden
Shift Problem.
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Solving the HSP


Evaluating f0 and f1
I Childs, Jao, and Soukharev – compute ∗ operator in


subexponential time
Solving HSP (using quantum computer)


I Kuperberg’s algorithm – faster running time,
superpolynomial space


I Regev’s algorithm – slower, but polynomial space
I Childs, Jao, Soukharev – fill in the gaps
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Conclusions


Assuming GRH, there is a subexpontial quantum
algorithm to compute isogenies.
With classical computers, isogeny problem is ”easier”
(p1/4 to p1/2) than discrete log, but situation is
reversed with quantum computers.
Actually, input to algorithm is End(E), or O.


I This is part of public parameters for all proposed
isogeny based cryptosystems.


For arbitrary, ordinary curves, there is a
subexponential (quantum) algorithm to compute
End(E), assuming the GRH.
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Last words?


Authors conclude: ”Since isogeny-based cryptosystems already
perform poorly at moderate security levels, any improved attacks
such as ours would seem to disqualify such systems from
consideration in a post-quantum world.”


Stolbunov: ”First of all, it is not clear whether the
superpolynomial quantum attack of Childs, Jao and Soukharev
will pose a realistic threat. The attack requires O(26


√
s log(s))


quantum gates. Physicists are in doubt about the possibility of
large-scale quantum computations, because of errors introduced
by the quantum decoherence. If no key length adjustment will be
needed to protect against the named attack, then the
isogeny-based schemes will offer, in general, shorter keys and
more efficient bandwidth usage, as compared to other
quantum-resistant hard problems. But this will come at a cost of
lower operational speeds.”
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The Second Paper (Jao, de Feo)


Flaws of previous system:
I Not very efficient (229s for 128 bit security)
I Subexponential attack


New supersingular isogeny-based cryptosytem
I Way more efficient (60ms for 128 bit security)
I No subexponential attack known
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Supersingular Curves


Recall E is supersingular if #(E(Fp)) = p + 1− t ,
and p|t .
Supersingular curves are rare.
Endomorphism ring of E is an order in quaternion
algebra.
In particular, End(E) is not commutative.
All supersingular curves can be defined over Fp2 .
Can represent ker(φ) efficiently over Fp2 . This is not
possible for ordinary curves.


I This fact leads to increase in speed.
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Supersingular Graphs


`-isogeny graph is `+ 1-regular (assuming ` 6 |p).
The graph is an expander graph, or Ramanujan
graph.
Supersingular isogeny graph used for Charles,
Goren, Lauter’s hash function.


Let p = `eA
A `


eB
B f ± 1 be prime, for small primes `A, `B.


Usually this is bad, but we don’t need discrete log to
be hard.
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Key Exchange


E E/〈R〉


E/〈S〉 E/〈R, S〉


R = mAPA + nAQA


S = mBPB + nBQB


φA


φB


φ′A


φ′B


Let PA,QA be generators of E [`ea
A ], and analogously


for PB,QB.
Alice chooses random mA,nA and computes
φA : E → EA with kernel mAPA + nAQA.
Alice sends EA,φA(PB) and φA(QB) to Bob. Bob does
similarly.
Alice computes φ′A : EB → EAB with kernel
mAφB(PA) + nAφB(QA). Bob does similarly.
The key is j(EAB).
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Speed and Security


(We skip description of encryption system)
Best general algorithm to compute isogenies
between supersingular curves is O


(√
p log2 p


)
.


There is a classical ”claw” attack with O ( 4
√


p), and a
quantum ”claw” attack with O ( 6


√
p)


Benchmarks (on desktop):


Security 85 bits 128 bits 170 bits
Time (ms) 28 66 122
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Summary


Isogeny-based cryptosystems.
Subexponential attack on isogenies between elliptic
curves.
Jao, de Feo propose new supersingular cryptosytem


I No quantum attacks known (yet)
I Efficient


Conclusion: wait and see.
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\begin{frame}

\frametitle{Outline}

\begin{itemize}

\item Background on Isogenies 

\vspace{10 pt}

\item Rostovstev and Stolbunov's cryposystem

\vspace{10 pt}

\item "Constructing elliptic curve isogenies in quantum subexponential time," (Childs, Jao, Soukharev) 2011

\vspace{10 pt}

\item "Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies," (Jao, de Feo) 2011

\end{itemize}

\end{frame}



\begin{frame}{Elliptic Curve} 

Let $K$ be a field.



An elliptic curve $E$ is a nonsingular curve of genus 1 with at least one $K$-rational point.

\begin{itemize}

\item Weierstrass form $$E: y^2+a_1 xy + a_3 xy=x^3+a_2x^2+a_4x+a_6.$$

\item Short Weierstrass form {\small (char($K)\neq 2,3)$}:  $$E:y^2=x^3+ax+b.$$

\end{itemize}

\begin{figure}

\includegraphics[width = 2 in]{ellipticcurve.jpg}

\end{figure}

\end{frame}



\section{Isogenies}

\begin{frame}{Isogenies}

\begin{itemize}

\item An isogeny $\phi$ is a non-constant homomorphism between elliptic curves given by rational maps.

\item Examples:

\begin{itemize}

\item Let $\phi:E \to E$ be defined by $\phi(P)=P+P+...+P=[n]P$, for some integer $n$.

\item Let $E$ be defined over $\mathbb{F}_p$.  Let $\pi:E \to E$ where $\pi(x,y)=(x^p,y^p).$  The isogeny $\pi$ is known as the \emph{Frobenius}.

\end{itemize}

\item Given a finite subgroup $F$ of $E(K)$, there is an isogeny $\phi:E \to E/F$ such that ker$(\phi)=F$.  

\item If $|F|=\ell$, then the degree of $\phi$ is $\ell$, and $\phi$ is an $\ell$-isogeny.

\end{itemize}

\end{frame}



\begin{frame}{V\'elu's formula}

\begin{itemize}

\item Let $E$ be an elliptic curve with finite subgroup $F$.  Then there is an isogeny $\phi$ from $E$ with kernel $F$.

\item For $P=(x_P,y_P) \notin F$, let 

$$\phi(P)=\Bigg(x_P+\sum_{\substack{Q \in F, \\Q \neq \infty}} (x_{P+Q}-x_Q),y_P+\sum_{\substack{Q \in F, \\Q \neq \infty}} (y_{P+Q}-y_Q)   \Bigg).$$

\item If $|F|=\ell$, then $\phi$ is known as an $\ell$-isogeny.

\end{itemize}

\end{frame}



\begin{frame}{V\'elu's formula - alternate version}

\begin{itemize}

\item Let $\phi$ be an $\ell$-isogeny, with $\ell$ odd.

\item Let $$\aligned D(x)&=\prod_{\infty \neq Q \in F, } (x-x_Q)  \\&=x^{\ell-1}-\sigma x^{\ell-2}+\dots \\&=g(x)^2. \endaligned$$

\item Then $\phi(x,y)=(R(x),yR'(x))$, with

$$R(x)=\ell x-\sigma-(3x^2+a)\frac{D'(x)}{D(x)}-2(x^3+ax+b)\Big(\frac{D'(x)}{D(x)} \Big)'.$$

\item So $\phi$ is completely determined by $D(x)=g(x)^2$.  

\item $g(x)$ is known as the \emph{kernel polynomial}

\end{itemize}

\end{frame}



\begin{frame}{Applications}

\begin{itemize}

\item SEA algorithm - count number of points on an elliptic curve over finite field

\item Distortion maps - needed for pairing-based crypto

\item Efficient point multiplication - key operation in ECC

\item Avoid ZVP attack

\item Random number generator

\item Isogeny volcanoes 

\item Security - isogenies transfer Discrete Log Problem between curves

\item Public key cryptosystems

\end{itemize}

\end{frame}



\begin{frame}{Ordinary and Supersingular}

\begin{itemize}

\item Let $K=\mathbb{F}_p$

\item Then $\#(E(\mathbb{F}_p))=p+1-t$, for some $t \leq 2\sqrt{p}$.

\item If $p|t$, then $E$ is \emph{supersingular}, otherwise $E$ is \emph{ordinary}

\item Most elliptic curves are ordinary

\item Supersingular curves have more special properties

\end{itemize}

\end{frame}



\begin{frame}{Hard Problem}

\begin{itemize}

\item Tate's Theorem:  $E_1$ is $\Fp$-isogenous to $E_2$ if and only if $\#(E_1(\Fp))=\#(E_2(\Fp))$.

\vspace{10 pt}

\item Hard Problem:  Given $\#(E_1(\Fp))=\#(E_2(\Fp))$, find an isogeny from $E_1$ to $E_2$.

\end{itemize}

\begin{figure}

\includegraphics[width = 3 in]{hardproblem.jpg}

\end{figure}

\end{frame}



\begin{frame}{Isogeny Graphs}

\begin{itemize}

\item Fact: $E_1$ and $E_2$ are isomorphic if and only if $j(E_1)=j(E_2)$, 

$$j(E)=\frac{4a^3}{4a^3+27b^2}.$$ 

\item $\ell$-Isogeny Graph

\begin{itemize}

\item Vertices: $j$-invariants of elliptic curves

\item Edges: Connect $E_1$ and $E_2$ if they are $\ell$-isogenous

\end{itemize}

\end{itemize}

\begin{figure}

\includegraphics[width = 2 in]{volcano.jpg}

\end{figure}

\end{frame}



\begin{frame}{Isogeny Stars}

\begin{itemize}

\item Let $E$ be an ordinary elliptic curve with $\#(E(\Fp))=p+1-t$.

\item Let $D=t^2-4p$.  Let $\ell$ be a prime such that $D$ is a square mod $\ell$.  

\item Choose parameters so that number of vertices is prime.

\item Then the $\ell$-isogeny graph containing $E$ is a cycle.  

\item Example: Over $\mathbb{F}_{83}$, there are 7 curves with $t=9$.  

\end{itemize}

\begin{figure}

\includegraphics[width = 3in]{star.jpg}

\end{figure}

\end{frame}



\begin{frame}{Routes}

\begin{figure}

\includegraphics[width = 3in]{stardirection.jpg}

\end{figure}

\begin{itemize}

\item There is a way to fix a direction on an isogeny star.

\item Let $R^{\ell}_{i}$ denote walking $i$ steps on $\ell$-star

\item Key observation: $R^{\ell}_i R^{\ell '}_j = R^{\ell '}_j R^{\ell}_i$

\item Example:

\begin{itemize}

\item Start at 34, with $i=4$, $j=3$.

\end{itemize}

\item A step on a route is computing an isogeny.

\end{itemize}

\end{frame}



\begin{frame}{Rostovtsev and Stolbunov's cryptosystem}

\begin{itemize}

\item Encryption:

\begin{itemize}

\item Agree on all parameters ($\Fp, \ell, \ell', t,$ etc...)

\item Private key: route $R_{priv}$

\item Public key: curve $E$, and curve $E_{pub}=R_{priv}(E)$

\item To send $m$, Bob picks random route $R_{enc}$ and computes $E_{enc}=R_{enc}(E_{pub})$.

\item Bob sends $(s,E')$ to Alice, where $s=m\cdot j(E_{enc})$ and $E'=R_{enc}(E)$.

\item Alice decrypts by computing $j=j(R_{priv}(E')$, and $m=s/j$.

\end{itemize}

\item Diffie-Hellman-ish key exchange:

\begin{itemize}

\item $E$ is fixed.  Alice sends $E_1=R_1(E)$ to Bob.  Bob sends $E_2=R_2(E)$ to Alice.

\item They can both compute $E_{key}=R_1(E_2)=R_2(E_1)$.  

\end{itemize}

\end{itemize}

\end{frame}



\begin{frame}{Security}

\begin{itemize}

\item To break the system, given $E_1$ and $E_2$, need to find a route $R(E_1)=E_2$.  



-- That is, compute an isogeny between $E_1$ and $E_2$.  

\item Timings: For 128 bit security, $\approx$229 seconds to encrypt/decrypt. (normal CPU)

\item The graph isn't computable 

\item Best attack is a meet-in-the-middle attack: Galbraith's algorithm, $O(\sqrt[4]{p})$.  

\item Mainly of theoretical interest.  

\item Possible post-quantum cryptosystem.

\end{itemize}

\end{frame}



\begin{frame}

\begin{figure}

\includegraphics[width = 3.5 in]{table.jpg}

\end{figure}

\end{frame}



\begin{frame}{Childs, Jao, Soukharev}

\begin{itemize}

\item Quantum, subexponential algorithm to compute (horizontal) isogenies.

\item Algorithm is $L_p(\frac{1}{2},\frac{\sqrt{3}}{2}+\sqrt{2})$, with polynomial space

\item Assumes Generalized Riemann Hypothesis

\item Key Idea: reduce to Hidden Shift Problem

\end{itemize}

\end{frame}



\begin{frame}{Hidden Shift Problem}

\begin{itemize}

\item Let $A$ be a finite abelian group, and $S$ a finite set.

\item Let $f_0,f_1:A \to S$ be injective functions.

\item There is a \emph{hidden shift} if 

$$f_1(x)=f_0(xs)$$

for some $s \in A$.  

\begin{block}{Hidden Shift Problem (HSP)}

Given $A,S$ and $f_0,f_1$ with a hidden shift, find $s$.

\end{block}

\end{itemize}

\end{frame}



\begin{frame}{Representing Isogenies}

\begin{itemize}

\item Let $\phi:E \to E'$ be an isogeny over $\Fp$.

\item Recall $\#(E(\Fp))=\#(E'(\Fp))=p+1-t$.  Let $D=t^2-4p <0$.

\item Fact: When $E$ is ordinary, End($E$) is an order $\mathcal{O}$ in $K=\mathbb{Q}(\sqrt{D})$.

\item The isogeny $\phi$ is determined by $E$ and ker$(\phi)$ (up to isomorphism).  

\item ker$(\phi)$ can be represented as an ideal $\mathfrak{b}$ in $\mathcal{O}$.

\end{itemize}

\vspace{20 pt}

$$\phi:E \to E_\mathfrak{b} \longleftrightarrow \mbox{ker}(\phi) \longleftrightarrow \mathfrak{b} \subseteq \mathcal{O}_K$$

\end{frame}



\begin{frame}{Isogenies and Class Groups}

$$\phi:E \to E_\mathfrak{b} \longleftrightarrow \mbox{ker}(\phi) \longleftrightarrow \mathfrak{b} \subseteq \mathcal{O}_K$$

\begin{itemize}

\item Principal ideals $(\mathfrak{a})$ correspond to isomorphisms.

\item Thus, the class group acts on ordinary, isogenous curves with the same endomorphism ring.

\item This defines an operator $*$

$$[\mathfrak{b}] * j(E) \to j(E_\mathfrak{b}),$$

where $[\mathfrak{b}]$ is the ideal class of $\mathfrak{b}$.  

\end{itemize}

\end{frame}



\begin{frame}{Reducing Isogenies to HSP}

\begin{itemize}

\item Let $\phi:E_0 \to E_1$ be an isogeny.

\item Let $\mathfrak{b}$ be the ideal corresponding to $\phi$.

\item Let $f_i([x]) \to [x] * j(E_i)$, for $i=0,1$.

\item Then

$$\begin{aligned}

f_1([x])&=[x] * j(E_1)\\

&=[x] * \left([\mathfrak{b}] * j(E_0)\right)\\

&=([x][\mathfrak{b}]) * j(E_0)\\

&=f_0([x][\mathfrak{b}]).

\end{aligned}$$

\item Thus the isogeny problem reduces to the Hidden Shift Problem.

\end{itemize}

\end{frame}



\begin{frame}{Solving the HSP}

\begin{itemize}

\item Evaluating $f_0$ and $f_1$

\begin{itemize}

\item Childs, Jao, and Soukharev -- compute $*$ operator in subexponential time

\end{itemize}

\item Solving HSP (using quantum computer)

\begin{itemize}

\item Kuperberg's algorithm -- faster running time, superpolynomial space

\item Regev's algorithm -- slower, but polynomial space

\item Childs, Jao, Soukharev -- fill in the gaps

\end{itemize}

\end{itemize}

\end{frame}



\begin{frame}{Conclusions}

\begin{itemize}

\item Assuming GRH, there is a subexpontial quantum algorithm to compute isogenies.

\item With classical computers, isogeny problem is "easier" $(p^{1/4}$ to $p^{1/2}$) than discrete log, but situation is reversed with quantum computers.

\item Actually, input to algorithm is End($E$), or $\mathcal{O}$.

\begin{itemize}

\item This is part of public parameters for all proposed isogeny based cryptosystems.

\end{itemize}

\item For arbitrary, ordinary curves, there is a subexponential (quantum) algorithm to compute End($E$), assuming the GRH.

\end{itemize}

\end{frame}



\begin{frame}{Last words?}

\begin{itemize}

\item {\footnotesize Authors conclude: "Since isogeny-based cryptosystems already perform

poorly at moderate security levels, any improved attacks such as ours would seem to

disqualify such systems from consideration in a post-quantum world."}

\item {\footnotesize Stolbunov: "First of all, it is not clear whether the superpolynomial quantum attack of

Childs, Jao and Soukharev will pose a realistic threat. The attack requires

$O(2^{6\sqrt {s \log(s)}})$ quantum gates. Physicists are in doubt about the possibility of

large-scale quantum computations, because of errors introduced by the quantum decoherence. If

no key length adjustment will be needed to protect against the named

attack, then the isogeny-based schemes will offer, in general, shorter keys and more efficient

bandwidth usage, as compared to other quantum-resistant hard problems. But this

will come at a cost of lower operational speeds."} 

\end{itemize}

\end{frame}



\begin{frame}{The Second Paper (Jao, de Feo)}

\begin{itemize}

\item Flaws of previous system:

\begin{itemize}

\item Not very efficient (229s for 128 bit security)

\item Subexponential attack

\end{itemize}

\vspace{20 pt}

\item New supersingular isogeny-based cryptosytem

\begin{itemize}

\item Way more efficient (60ms for 128 bit security)

\item No subexponential attack known

\end{itemize}

\end{itemize}

\end{frame}



\begin{frame}{Supersingular Curves}

\begin{itemize}

\item Recall $E$ is supersingular if $\#(E(\Fp))=p+1-t$, and $p|t$.

\item Supersingular curves are rare.

\item Endomorphism ring of $E$ is an order in quaternion algebra.

\item In particular, End($E$) is not commutative.

\item All supersingular curves can be defined over $\mathbb{F}_{p^2}$.

\item Can represent ker$(\phi)$ efficiently over $\mathbb{F}_{p^2}$.  This is not possible for ordinary curves.

\begin{itemize}

\item This fact leads to increase in speed.

\end{itemize}

\end{itemize}

\end{frame}



\begin{frame}{Supersingular Graphs}

\begin{itemize}

\item $\ell$-isogeny graph is $\ell+1$-regular (assuming $\ell \nodiv p$).

\item The graph is an expander graph, or Ramanujan graph.

\item Supersingular isogeny graph used for Charles, Goren, Lauter's hash function.

\vspace{10 pt}

\item Let $p=\ell_A^{e_A} \ell_B^{e_B}f \pm 1$ be prime, for small primes $\ell_A, \ell_B$.

\item Usually this is bad, but we don't need discrete log to be hard.

\end{itemize}

\end{frame}



\begin{frame}{Key Exchange}

\begin{figure}

\includegraphics[width = 3.5 in]{commisog.pdf}

\end{figure}

\vspace{-15 pt}

\begin{itemize}

\item Let $P_A,Q_A$  be generators of $E[\ell_A^{e_a}]$, and analogously for $P_B,Q_B$.

\item Alice chooses random $m_A,n_A$ and computes $\phi_A:E \to E_A$ with kernel $m_AP_A+n_AQ_A$.

\item Alice sends $E_A$,$\phi_A(P_B)$ and $\phi_A(Q_B)$ to Bob. Bob does similarly.

\item Alice computes $\phi'_A:E_B \to E_{AB}$ with kernel $m_A\phi_B(P_A)+n_A\phi_B(Q_A)$.  Bob does similarly.

\item The key is $j(E_{AB})$.

\end{itemize}

\end{frame}



\begin{frame}{Speed and Security}

\begin{itemize}

\item (We skip description of encryption system)

\item Best general algorithm to compute isogenies between supersingular curves is $O\left(\sqrt{p} \log^2{p}\right)$.

\item There is a classical "claw" attack with $O\left( \sqrt[4]{p}\right)$, and a quantum "claw" attack with $O\left( \sqrt[6]{p}\right)$

\item Benchmarks (on desktop):

\end{itemize}

\vspace{5 pt}

\begin{center}

\begin{tabular}{ |l | c | c | c |}

\hline

Security & 85 bits & 128 bits & 170 bits \\

  \hline                        

Time (ms) &  28 & 66& 122 \\

   \hline  

\end{tabular}

\end{center}

\end{frame}



\begin{frame}{Summary}

\begin{itemize}

\item Isogeny-based cryptosystems.

\item Subexponential attack on isogenies between elliptic curves.

\item Jao, de Feo propose new supersingular cryptosytem

\begin{itemize}

\item No quantum attacks known (yet)

\item Efficient

\end{itemize}

\vspace{5 pt}

\item Conclusion:  wait and see.

\end{itemize}

\end{frame}



\end{document}
























Differential Invariants

Continuing the Classification Based Security Schema for Multivariate Public Key Cryptography in the Hope that the Process will Eventually Lead to Reasonable Security Criteria for this Particular Family of Potentially Quantum-Resistant Public Key Cryptosystems





Structure in the Differential

Consider the Differential Coordinate forms of a field map , .

Suppose that there exists a subspace  (over some base field ) which is simultaneously invariant with respect to all ).

Then there exist linear maps such that  as a linear transformation.





OV Type of Differential Invariant

Recall that the Kipnis-Shamir attack used an invariant of , where each is in the span of the differential coordinate forms.

In this case, the subspace isn’t invariant with respect to , instead, the nonlinear map  maps one subspace into another subspace.

(The identification of the subspaces was the critical step in the cryptanalysis.)





First-Order Differential Invariant

We say that  is a 1st-order differential invariant of  if there exists a subspace  such that A for all  and .

Includes the case of simultaneous invariant and OV style of invariant.

Can be generalized to higher-order (image of  contained in union of subspaces with dimension sum constraint.)







Symmetric Representation

Suppose  is a 1st-order differential invariant of .  Let  be the set of all vectors in  which are “orthogonal” to .

Let  be arbitrary linear projections onto these subspaces.

Then the following is satisfied  and :  .





Differential Invariants

, where .



All minors are zero, so this matrix is of rank 1.

This implies that  for some .

This is only possible if the maps project onto a 1 dimensional subspace of .































 (or )



x= , which implies the inequality, .

Using the suggested projection onto a hyperplane,  has rank at most two.

For any function we can find such a map .

Thus there is no nontrivial structure other than .
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* Consider the Differential Coordinate forms of
afieldmap f: k - k, Df;.

* Suppose that there exists a subspace V (over
some base field F € k) which is
simultaneously invariant with respect to all
M < Span(Df;).

* Then there exist linear maps My, M,such that
M;{MM, = 0 as a linear transformation.
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» Recall that the Kipnis-Shamir attack used an
invariant of (M;)~1M,, where each is in the
span of the differential coordinate forms.

* In this case, the subspace isn’t invariant with
respect to M;, instead, the nonlinear map f
maps one subspace into another subspace.

* (The identification of the subspaces was the
critical step in the cryptanalysis.)
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* We say that Vis a 1st-order differential
invariant of f if there exists a subspace W
such that AV € W forall A € Span(Df;) and
dim(W) < dim(V).

* Includes the case of simultaneous invariant
and OV style of invariant.

* Can be generalized to higher-order (image of
I/ contained in union of subspaces with
dimension sum constraint.)
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* Suppose V is a 1st-order differential invariant
of f. Let V! be the set of all vectors in k
which are “orthogonal” to V.

* Let M, M* be arbitrary linear projections onto
these subspaces.

* Then the following is satisfied Va, x € k and i:
a’ (MHTDf;Mx = 0.
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C*()Differential Invariants
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« Df(Mta, Mx) = 20<”<n¢l]a xq where
lp] - m](ml 9) +m, (m] 0)q

my Mg my m; .. My_q ]
m_g Mg My_g Mg ... Mu_q1-9
All minors are zero, so this matrix is of rank 1.
This implies that Mtx = M(s * x) for some s.

This is only possible if the maps project onto a
1 dimensional subspace of k.
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pC” (orpC*™ = pSFLASH)
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D(f e m)(Mta, Mx) = Df (tM+a, tMx)
TMtx= M (s * x), which implies the
inequality, dim(Mk) < dim(Mk n kerm) + 1.

Using the suggested projection onto a
hyperplane, M has rank at most two.

For any function we can find such a map M.

Thus there is no nontrivial structure other
than kerm.
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Multivariate Public Key Cryptography


Nonlinear Systems


Base the security of the cryptographic scheme on the difficulty of
finding a preimage of some element in the range of a system of
nonlinear equations.
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Quantum-Resistant Public Key Schemes
Basic Examples of Schemes


Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Multivariate Public Key Cryptography


Nonlinear Systems


Base the security of the cryptographic scheme on the difficulty of
finding a preimage of some element in the range of a system of
nonlinear equations.


The fundamental problem has been studied for at least hundreds of
years and seems difficult.
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Systems of Quadratic Equations


We can restrict ourselves to systems of quadratic equations.


Key Size


A system of m quadratic equations in n unknowns consists of
m(


(


n
2


)


+ n) monomials. Key sizes are (in general) proportional to
mn2. If m ≈ n, key sizes scale like n3.
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Quantum-Resistant Public Key Schemes
Basic Examples of Schemes


Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Systems of Quadratic Equations


We can restrict ourselves to systems of quadratic equations.


Key Size


A system of m quadratic equations in n unknowns consists of
m(


(


n
2


)


+ n) monomials. Key sizes are (in general) proportional to
mn2. If m ≈ n, key sizes scale like n3.


Underlying Problem


The MQ problem of solving systems of quadratic equations over a
field is NP-complete.
At least there is a chance that cryptanalysis may be difficult.
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Low Level-Structural Attacks


Prototypical Multivariate Public Key Scheme


Butterfly Construction


Let f be an efficiently invertible (in some sense) system of m
quadratic formulae in n variables over some field Fq. Let U and T


be Fq-linear maps of dimension n and m, respectively.
Let P = T ◦ f ◦ U.
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Prototypical Multivariate Public Key Scheme


Butterfly Construction


Let f be an efficiently invertible (in some sense) system of m
quadratic formulae in n variables over some field Fq. Let U and T


be Fq-linear maps of dimension n and m, respectively.
Let P = T ◦ f ◦ U.


Since P is simply a representation of f (consider choosing different
bases for the input and output spaces), y = P(x) is not an
arbitrary instance of MQ.
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Morphism of Polynomials (MP) Problem


Let Fq be the finite field with q elements. Let f and P be
functions from F n
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P = T ◦ f ◦ U.
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Morphisms of Polynomials


Morphism of Polynomials (MP) Problem


Let Fq be the finite field with q elements. Let f and P be
functions from F n


q to Fm
q . Find Fq-affine maps T and U such that


P = T ◦ f ◦ U.


Isomorphism of Polynomials (IP) Problem


Find a solution to the MP problem in which T and U are
bijections.
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Morphisms of Polynomials


Morphism of Polynomials (MP) Problem


Let Fq be the finite field with q elements. Let f and P be
functions from F n


q to Fm
q . Find Fq-affine maps T and U such that


P = T ◦ f ◦ U.


Isomorphism of Polynomials (IP) Problem


Find a solution to the MP problem in which T and U are
bijections.


IP 1 Secret (IP1S) Problem


Find a solution to the IP problem in which T is the identity.
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High Level-Fundamental Problems
Low Level-Structural Attacks


Classical Cryptanalysis?


Algebraic Attack


Use Gröbner basis algorithms to solve the system of equations
arising from an instance of the scheme. This technique amounts to
trying to solve the MQ problem directly.
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Algebraic Attack


Use Gröbner basis algorithms to solve the system of equations
arising from an instance of the scheme. This technique amounts to
trying to solve the MQ problem directly.


Structural Attack


Utilize the special structure of the core map to perform a key
recovery attack. Essentially solve a morphism problem for a
subclass of maps.
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Classical Cryptanalysis?


Algebraic Attack


Use Gröbner basis algorithms to solve the system of equations
arising from an instance of the scheme. This technique amounts to
trying to solve the MQ problem directly.


Alternative Algebraic Attack


Develop algorithms for specifically solving MP/IP/IP1S
problems.


Structural Attack


Utilize the special structure of the core map to perform a key
recovery attack. Essentially solve a morphism problem for a
subclass of maps.
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The Complexity of Morphism Problems


MP is NP-hard


Poly-time reduction to 3-Tensor Rank Problem.
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


The Complexity of Morphism Problems


MP is NP-hard


Poly-time reduction to 3-Tensor Rank Problem.


IP1S is GI-hard


Given a pair of graph presentations of length n, the existence of an
isomorphism can be determined by the solution of a system of
equations with O(n3/2) variables and equations.
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


The Complexity of Morphism Problems


MP is NP-hard


Poly-time reduction to 3-Tensor Rank Problem.


IP1S is GI-hard


Given a pair of graph presentations of length n, the existence of an
isomorphism can be determined by the solution of a system of
equations with O(n3/2) variables and equations.


Deciding IP is not NP-hard


(Unless the poly-time hierarchy collapses.)
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High Level-Fundamental Problems
Low Level-Structural Attacks


Rank Attacks


Low Rank Attack


Find quadratic forms in the span of the public key polynomials
which have low rank.
Useful when the private key contains formulae with few variables.
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Rank Attacks


Low Rank Attack


Find quadratic forms in the span of the public key polynomials
which have low rank.
Useful when the private key contains formulae with few variables.


Dual Rank Attack


Find a small subspace in the kernel of much of the span of the
public polynomials.
Useful when the private key contains variables occurring in very
few formula.
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Rank Attacks


Low Rank Attack


Find quadratic forms in the span of the public key polynomials
which have low rank.
Useful when the private key contains formulae with few variables.


Dual Rank Attack


Find a small subspace in the kernel of much of the span of the
public polynomials.
Useful when the private key contains variables occurring in very
few formula.


Used to break triangular and “tame-like” schemes.
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Differential Attacks - Discrete Differential


Definition


The Discrete Differential of a map f : k → k is given by:


Df (a, x) = f (a + x)− f (x)− f (a) + f (0).
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Differential Attacks - Discrete Differential


Definition


The Discrete Differential of a map f : k → k is given by:


Df (a, x) = f (a + x)− f (x)− f (a) + f (0).


Elementary Properties


1 Linear operator.


2 Reduces complexity of a function: If f is quadratic, Df is
bilinear.


3 If f is quadratic, D(Tf (Ux + c) + d) = D(Tf (Ux)).
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Differential Attacks - Differential of Multivariate Scheme


DP


Let P = T ◦ f ◦ U. DP(a, x) = TDf (Ua,Ux).
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Differential Attacks - Differential of Multivariate Scheme


DP


Let P = T ◦ f ◦ U. DP(a, x) = TDf (Ua,Ux).


Differential Coordinate Forms


Since P has n coordinates, DP can be split into n bilinear
differential coordinate forms, DPi = TiDf (La, Lx), where Ti


represents the action of T on the ith coordinate.
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Differential Attacks - Differential of Multivariate Scheme


DP


Let P = T ◦ f ◦ U. DP(a, x) = TDf (Ua,Ux).


Differential Coordinate Forms


Since P has n coordinates, DP can be split into n bilinear
differential coordinate forms, DPi = TiDf (La, Lx), where Ti


represents the action of T on the ith coordinate.


Span of Forms


For all multivariate schemes, Span(DPi) ⊆ Span(D(f ◦ L)i ).
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Differential Attacks - Differential Symmetry


General Linear Differential Symmetries


Df (La, x) + Df (a, Lx) = ΛLDf (a, x)
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Differential Attacks - Differential Symmetry


General Linear Differential Symmetries


Df (La, x) + Df (a, Lx) = ΛLDf (a, x)


Can be used to break SFLASH(C ∗−), MI(C ∗), SQUARE, ℓ-IC−,. . .
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Summary


High Level-Fundamental Problems
Low Level-Structural Attacks


Differential Attacks - Differential Symmetry


General Linear Differential Symmetries


Df (La, x) + Df (a, Lx) = ΛLDf (a, x)


Can be used to break SFLASH(C ∗−), MI(C ∗), SQUARE, ℓ-IC−,. . .


Determination Possible


In principle, the space of linear maps L satisfying such a relation
can be discovered (at least to live within a small subspace of the
space of all linear maps).
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Differential Attacks - Differential Invariants


First-Order Differential Invariants


The map f has a differential invariant if there exist V and W


subspaces of F n
q such that dim(W ) ≤ dim(V ) with the property


that Mv ∈ W for all M ∈ Span(Dfi) and for all v ∈ V .


9th Sept., 2013 Daniel Smith-Tone Quantum-Resistant MPKC 12/24







Quantum-Resistant Public Key Schemes
Basic Examples of Schemes


Summary


High Level-Fundamental Problems
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Differential Attacks - Differential Invariants


First-Order Differential Invariants


The map f has a differential invariant if there exist V and W


subspaces of F n
q such that dim(W ) ≤ dim(V ) with the property
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First-Order Differential Invariants


The map f has a differential invariant if there exist V and W


subspaces of F n
q such that dim(W ) ≤ dim(V ) with the property


that Mv ∈ W for all M ∈ Span(Dfi) and for all v ∈ V .


Can be used to break Oil-Vinegar, as well as several schemes
involving multiple-types of variables with artificial mixing.
Let MV be a projection onto V , then differential invariants induce
nonlinear symmetry (MW TMMV = 0 for all M ∈ Span(Dfi)).


Determination Possible


In principle, the space of linear maps MV satisfying such a relation
can be discovered (at least to live within a small subspace of the
space of all linear maps).
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Big Field Schemes
Small Field Schemes


The C
∗ Scheme


The C ∗ cryptosystem is the simplest example of a “big field”
scheme.


Construction


k


|
Fq


]


n We can identify x ∈ k with x ∈ F
n
q.


Encryption Scheme


y = P(x) = (T ◦ f ◦ U)x where f (x) = xq
θ+1.


(Df (a, x) = axq
θ


+ aq
θ


x .)
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Core Map


Let k be a degree n extension field of Fq and let f : k → k be


defined by f (x) =
∑
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qi+qj where I is some index set


such that the pairs satisfy some degree bound qi + qj ≤ d .
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defined by f (x) =
∑


(i ,j)∈I α(i ,j)x
qi+qj where I is some index set


such that the pairs satisfy some degree bound qi + qj ≤ d .


Vulnerable


The original proposal can be broken with algebraic attacks
involving Gröbner basis computations. This class of systems of
formulae generate easy MQ problems.


We can make this more precise with degree of regularity results.
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Big Field Schemes
Small Field Schemes


Modifiers


To secure schemes from these attacks, several modifiers have been
developed.


Most Important Modifiers


1 The minus (-) modifier: removing r of the public equations,
and


2 the vinegar (v) modifier: additional variables are added to the
system, the values of which are randomly assigned in the
inversion process.
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∗ and C
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Definition [based on Dubois et al. (2007)]


A function f has the Multiplicative Symmetry if:
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A function f has the Multiplicative Symmetry if:
Df (σa, x) + Df (a, σx) = p(σ)Df (a, x) for all σ ∈ k .


C ∗ monomial


Df (σa, x) + Df (a, σx) = (σqθ + σ)Df (a, x),
DP(U−1σUa, x) +DP(a,U−1σUx) = LσDP(a, x).


This relation provides a criterion for discovering the multiplicative
structure of k which undermines C ∗. Since this method doesn’t
require that T be invertible, this method works for C ∗− as well to
generate enough relations to turn it into C ∗.
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HFEv and HFEv-


HFEv


Let the core map be given by
f (x , v) =
∑


i ,j(αi ,jx
qi+qj +βi ,jx


qi vq
j


+ γi ,jv
qi+qj )+


∑


i aix
qi +


∑


i biv
qi + c ,


where v is restricted to a small subspace of k .
Inversion is accomplished by fixing the values of v and then
inverting the resulting set of HFE equations.
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Let the core map be given by
f (x , v) =
∑


i ,j(αi ,jx
qi+qj +βi ,jx


qi vq
j


+ γi ,jv
qi+qj )+


∑


i aix
qi +


∑


i biv
qi + c ,


where v is restricted to a small subspace of k .
Inversion is accomplished by fixing the values of v and then
inverting the resulting set of HFE equations.


If we use, in addition, the minus modifier we obtain HFEv−.
QUARTZ is an HFEv− scheme.
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Balanced Oil-Vinegar


The Core Map


Let f : F2o
q → F


o
q be a random quadratic map such that given


random constants c1, . . . , co ∈ Fq, f (x1, . . . , xo , c1, . . . , co) is affine
in x1, . . . , xo .
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Let f : F2o
q → F


o
q be a random quadratic map such that given


random constants c1, . . . , co ∈ Fq, f (x1, . . . , xo , c1, . . . , co) is affine
in x1, . . . , xo .


The Entire Map


The public map, P , is defined by P = f ◦ L for some affine map, L.


Inversion


Randomly choose c1, . . . , co , solve y = f (x1, . . . , xo , c1, . . . , co),
compute L−1(x1, . . . , xo , c1, . . . , co)


T .
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Big Field Schemes
Small Field Schemes


Differential Version of Kipnis-Shamir Attack


Trivial Differential Property of Core Map


Let O represent the subspace generated by the first o coordinates.
For all a, x ∈ O, Df (a, x) = 0. Therefore each differential
coordinate form, Dfi , has the form:


[


0 Dfi1
Df Ti1 Dfi2


]


.
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Differential Version of Kipnis-Shamir Attack


Trivial Differential Property of Core Map


Let O represent the subspace generated by the first o coordinates.
For all a, x ∈ O, Df (a, x) = 0. Therefore each differential
coordinate form, Dfi , has the form:


[


0 Dfi1
Df Ti1 Dfi2


]


.


Differential Invariant


Let M1 and M2 be two invertible matrices in the span of the Dfi .
Then M−1


1 M2 is an O-invariant transformation of the form:


[


A B


0 C


]


.
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Small Field Schemes


Broken


Find the Invariant Subspace


Since D(f ◦ L)i = LTDfiL, an attacker needs only find two
invertible maps, M1,M2, in the span of DPi , and find the invariant
subspace of M−1


1 M2.
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Broken


Find the Invariant Subspace


Since D(f ◦ L)i = LTDfiL, an attacker needs only find two
invertible maps, M1,M2, in the span of DPi , and find the invariant
subspace of M−1


1 M2.


New Decryption Map


Once recovered, the attacker produces a change of basis, M,
sending the basis of O to the first o standard basis vectors. The
attacker can then sign a document by the same method as the
legitimate user.
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UOV


Unbalanced Oil-Vinegar


Increase the number of vinegar variables.
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Big Field Schemes
Small Field Schemes


UOV


Unbalanced Oil-Vinegar


Increase the number of vinegar variables.


SIDE NOTE: There is an interesting natural parametrization within
HFE and UOV.
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Conclusions
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Summary


Conclusions


Most practical attacks are structural and work against a
subclass of systems.


Quantum complexity theoretic results on MP/IP/IP1S
would be very interesting.


Quantum algorithms for some of these generic problems?


Quantum enhancements (polynomial or exponential speedup)
for structural attacks?
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Done


Thanks!


I will post some references when I wake up.
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PQC


Cryptosystems that have potential to resist the future quantum
computer attacks.


Code-based cryptography


Hash-based crytograohy
Lattice cryptography
Multivariate cryptography
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What is a MPKC?


Multivariate Public Key Cryptosystems
- Cryptosystems with public keys as a set of multivariate
functions


Public key: G is a map from kn to km:


G (x1, . . . , xn) = (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn));


G = L2 ◦ F ◦ L1,


over k , a small finite field like GF(28)
F : central map and F−1 easy to compute.
L1 and L2: "locks" on the secret of F .
Private key: a way to compute G−1 via the map
decomposition or factoring.


G−1 = L−1
2 ◦ F


−1 ◦ L−1
1 .
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a MPKC signature system


Signing (a hash of) a document:


(x1, . . . , xn) ∈ G−1(y1, . . . , ym)


G−1(y1, . . . , ym) = L−1
2 ◦ F


−1 ◦ L−1
1 (y1, . . . , ym).


Verifying: (y1, . . . , ym)
?
= G (x1, . . . , xn).
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Theoretical Foundation


Direct attack is to solve the set of equations:


G (M) = G (x1, ..., xn) = (y ′1, ..., y
′
m).


- Solving a set of n randomly chosen equations (nonlinear)
with n variables is NP-hard, though this does not necessarily
ensure the security of the systems.
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Quadratic Constructions


1) Efficiency considerations lead to mainly quadratic
constructions.


Gl (x1, ..xn) =
∑
i ,j


αlijxixj +
∑


i


βlixi + γl .


2) Mathematical structure consideration: Any set of high
degree polynomial equations can be reduced to a set of
quadratic equations.


x1x2x3 = 1,


is equivalent to


x4 = x1x2


x4x3 = 1.
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The view from the history of Mathematics


RSA – Number Theory – the 18th century mathematics


ECC – Theory of Elliptic Curves – the 19th century
mathematics
Multivariate Public key cryptosystem – Algebraic Geometry –
the 20th century mathematics


Algebraic Geometry – Theory of Polynomial Rings


Humans have been trying to solve polynomial equations for
thousands of years.
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A quick historic overview


Single variable quadratic equation – Babylonian around 1800
to 1600 BC


Cubic and quartic equation – around 1500


Tartaglia Cardano
Multivariate system– 1964-1965
Buchberger : Gröobner Basis
Hironaka: Normal basis
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The hardness of the problem


Single variable case – Galois’s work.


Newton method – continuous system
Berlekamp’s algorithm – finite field and low degree


Multivariate case: NP- hardness of the generic systems.
Numerical solvers – continuous systems
Finite field case
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Historical Development


Early attempts by Diffie, Fell, Imai, Ong, Matsumoto, Schnorr,
Shamir, Tsujii, etc


Fast development in the late 1990s.
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How to construct G?


The unbalanced Oil-Vinegar scheme by Kipnis, Patarin and
Goubin 1999.


G = F ◦ L.
F : nonlinear, easy to compute F−1.
L: invertible linear, to hide the structure of F .
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Unbalanced Oil-vinegar (uov) schemes


F = (f1(x1, .., xo , x ′1, ..., x
′
v ), · · · , fo(x1, .., xo , x ′1, ..., x


′
v )).


Each fi is an Oil-Vinegar polynomial:


fl (x1, ., xo , x ′1, ., x
′
v ) =


∑
alijxix ′j +


∑
blijx ′i x


′
j +


∑
clixi+


∑
dlix ′i +el .


Oil variables: x1, ..., xo .


Vinegar variables: x ′1, ..., x
′
v .
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How to invert F?


Randomly assign values to Vinegar variables:


fl (x1, ., xo , x ′1, ., x
′
v︸ ︷︷ ︸


fix the values


) =


∑
alijxix ′j +


∑
blijx ′i x


′
j +


∑
clixi +


∑
dlix ′i + el .


fl (x1, ., xo , x ′1, ., x
′
v ) =∑


alijxix ′j +
∑


blijx ′i x
′
j +


∑
clixi +


∑
dlix ′i + el .


F : linear in Oil variables: x1, .., xo .


=⇒ F : easy to invert.
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The F for Rainbow


Layer 1:
Vinegar: x1, ., xv1


Oil: xv1+1, ., xv1+o1


(f1, ..., fo1)


Layer 2:
Vinegar: x1, ., xv1 , xv1+1, ., xv1+o1 Oil: xv1+o1+1, ., xv1+o1+o2


(fo1+1, ..., fo1+o2)


F = (f1, .., fo1 , fo1+1, ..., fo1+o2).
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The F−1 for Rainbow


Layer 1:
Assign values to Vinegar: x1, ., xv1 in


(f1, ..., fo1) = (y1, .., yo1),


solve and find the value of Oil: xv1+1, ., xv1+o1


Layer 2:
Plug in values of
Vinegar: x1, ., xv1 , xv1+1, ., xv1+o1


in
(fo1+1, ..., fo1+o2) = (yo1+1, .., yo1+o2)


find the values of Oil: xv1+o1+1, ., xv1+o1+o2


This givs us F−1(yi , .., yo1+o2 :
(x1, .., xv1 , ..., xo1+v1 , ..., xo1+o2+v1).
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Security analysis


1 Systematic theoretical and experimental analysis


Direct attack does not work against best existing polynomial
solving algorithms
The cpomplexity bahves just like a random system.
Finding keys again becomes a problem of solving polynomial
equations
Here we need to be careful with choice of parameters.
MinRank attack on Rainbow:
Given a set of matrix M1, ..Mn find a non-trivial


∑
aiMi with


lowest rank.
MinRank is a hard problem and attack it is reduced to solve
multivariate polynomial equations again.
Natural Side channel attack resistance.


2 No weakness yet being found in the design.
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Parameters and Performance


Rainbow(17,13,13) over GF(28): Signature size: 43 bytes,
private key: 19.1KB, public key 25.1KB.
Rainbow(26,16,17) over GF(28): Signature size: 59 bytes ,
private key 45.0KB, public key 59.0KB.
Rainbow(36,21,22) over GF(28): Signature size: 79 bytes,
private key 101.5KB, public key 136.1KB.
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Parameters and Performance


High efficiency – solving linear equations.
IC for Rainbow: 804 cycles. ( ASAP 2008)
FPGA implementation at Bochum (CHES 2009) – Beat ECC
in area and speed.
Faster parallel implementation 200 cycles – (PQC 2011)


Relative large public key
Further optimizations – Petzoldt, Buchmann etc. at TU
Darmstadt
Highly efficient compact signature
Small devices – RFID, Sensors.
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Another choice – HFEV-Minus – Quartz


The basic design: Hidden field equation system (HFE) with
Vinegar variables and Minus modification designed in 1999


HFE: kn can be identified as a lrage field K̄ = k[x ]/g(x),
where g(x) an ireeducible polynomial.


We use a olynomail


F (X ) =
∑


aijX qi+qj
+
∑


biX qi
+ C ..


Very short signature ( 107 bits) but slow.
No weakness yet found.
New designs by Ding, Petzoldt, Tao, Yang. very efficient
(more than 1000 times faster with a 92 bits signature, or
170bits for post-quantum signature.)
Solid theoretical and experimental security analysis.
Degree of regularity, solving degree, degeneration degree
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The basic design


The public key is given as:


G (x1, ..., xn) = (G1(x1, ..., xn), ...,Gm(x1, ..., xn)) = L2 ◦ F ◦ L1.


Gi are multivariate polynomials over a finite field, which are
mostly degree 2


Any plaintext M = (x ′1, ..., x
′
n) is encrypted via polynomial


evaluation:
G (M) = G (x ′1, ..., x


′
n) = (y ′1, ..., y


′
m).


To decrypt the ciphertext (y ′1, ..., y
′
n), one needs to know a


secret (the secret key) to compute the inverse map G−1 to
find the plaintext (x ′1, ..., x


′
n) = G−1(y ′1, .., y


′
n).
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Toy example


We use the finite field k = GF [2]/(x2 + x + 1) with 22


elements.


We denote the elements of the field by the set {0 , 1 , 2 , 3} to
simplify the notation.
Here 0 represents the 0 in k , 1 for 1, 2 for x , and 3 for 1 + x .
In this case, 1 + 3 = 2 and 2 ∗ 3 = 1 .
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A toy example


G0(x1, x2, x3) = 1 + x2 + 2x0x2 + 3x2
1 + 3x1x2 + x2


2


G1(x1, x2, x3) = 1 + 3x0 + 2x1 + x2 + x2
0 + x0x1 + 3x0x2 + x2


1


G2(x1, x2, x3) = 3x2 + x2
0 + 3x2


1 + x1x2 + 3x2
2


For example, if the plaintext is: x0 = 1 , x1 = 2 , x2 = 3 , then
we can plug into G1,G2 and G3 to get the ciphertext y0 = 0 ,
y1 = 0 , y2 = 1 .
This is a bijective map and we can invert it easily. This
example is based on the Matsumoto-Imai cryptosystem.
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The best designs


Internal perturbation of HFE and perturbed MI with Plus.
Designed by Ding, Schmidt.


But relatively slow and large key size.
New designs – Simple matrix method by Ding and Tao 2013.
The efficiency is now comparable with with the signature
scheme.
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Main attacks


Albegraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.
Degree of regularity, degeneration degree, solving degree.


MinRank Problem:
Given a set of matrix M1, ..Mn, find the nonetrivial minimum
rank of a1M1 + a2M2 + ..., anMn.
This is again coverted in to a polynomial solving problem.
Hidden symmetry: we can handle these problems easily by
eliminating those symmetries with mathematical proofs. ( D.
Smith, R. Perlner)
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Algebraic attacks


Algebraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.


Polynomial solving algorithms: F4, Mutant XL, SAT solvers etc
We have a solid understanding of the complexity of those
attacks, where our theoretical analysis matches precisely the
experimental analysis.
Degeneration degree, solving degree ( degree of regualrity)
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Summary


MPKC provide the best signature designs in terms of
computing performance and signature size.


The security analysis has solid theoretical support and
systematic experimental support.
Drawback: relative large key sizes (10s KB) but can be
substantially improved with further optimization
We have solid but not so efficient encryption schemes. New
designs are catching up.
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The end


Thank you
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