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Multivariate Public Key Cryptography

Nonlinear Systems

Base the security of the cryptographic scheme on the difficulty of
finding a preimage of some element in the range of a system of
nonlinear equations.

The fundamental problem has been studied for at least hundreds of
years and seems difficult.
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Key Size
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Systems of Quadratic Equations

We can restrict ourselves to systems of quadratic equations.

Key Size

A system of m quadratic equations in n unknowns consists of
m(

(

n
2

)

+ n) monomials. Key sizes are (in general) proportional to
mn2. If m ≈ n, key sizes scale like n3.

Underlying Problem

The MQ problem of solving systems of quadratic equations over a
field is NP-complete.
At least there is a chance that cryptanalysis may be difficult.
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Prototypical Multivariate Public Key Scheme

Butterfly Construction

Let f be an efficiently invertible (in some sense) system of m
quadratic formulae in n variables over some field Fq. Let U and T

be Fq-linear maps of dimension n and m, respectively.
Let P = T ◦ f ◦ U.
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Prototypical Multivariate Public Key Scheme

Butterfly Construction

Let f be an efficiently invertible (in some sense) system of m
quadratic formulae in n variables over some field Fq. Let U and T

be Fq-linear maps of dimension n and m, respectively.
Let P = T ◦ f ◦ U.

Since P is simply a representation of f (consider choosing different
bases for the input and output spaces), y = P(x) is not an
arbitrary instance of MQ.
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Morphisms of Polynomials

Morphism of Polynomials (MP) Problem

Let Fq be the finite field with q elements. Let f and P be
functions from F n

q to Fm
q . Find Fq-affine maps T and U such that

P = T ◦ f ◦ U.
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Let Fq be the finite field with q elements. Let f and P be
functions from F n

q to Fm
q . Find Fq-affine maps T and U such that

P = T ◦ f ◦ U.

Isomorphism of Polynomials (IP) Problem

Find a solution to the MP problem in which T and U are
bijections.
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Morphisms of Polynomials

Morphism of Polynomials (MP) Problem

Let Fq be the finite field with q elements. Let f and P be
functions from F n

q to Fm
q . Find Fq-affine maps T and U such that

P = T ◦ f ◦ U.

Isomorphism of Polynomials (IP) Problem

Find a solution to the MP problem in which T and U are
bijections.

IP 1 Secret (IP1S) Problem

Find a solution to the IP problem in which T is the identity.
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Classical Cryptanalysis?

Algebraic Attack

Use Gröbner basis algorithms to solve the system of equations
arising from an instance of the scheme. This technique amounts to
trying to solve the MQ problem directly.
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Classical Cryptanalysis?

Algebraic Attack

Use Gröbner basis algorithms to solve the system of equations
arising from an instance of the scheme. This technique amounts to
trying to solve the MQ problem directly.

Alternative Algebraic Attack

Develop algorithms for specifically solving MP/IP/IP1S
problems.

Structural Attack

Utilize the special structure of the core map to perform a key
recovery attack. Essentially solve a morphism problem for a
subclass of maps.
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MP is NP-hard

Poly-time reduction to 3-Tensor Rank Problem.
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The Complexity of Morphism Problems

MP is NP-hard

Poly-time reduction to 3-Tensor Rank Problem.

IP1S is GI-hard

Given a pair of graph presentations of length n, the existence of an
isomorphism can be determined by the solution of a system of
equations with O(n3/2) variables and equations.
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The Complexity of Morphism Problems

MP is NP-hard

Poly-time reduction to 3-Tensor Rank Problem.

IP1S is GI-hard

Given a pair of graph presentations of length n, the existence of an
isomorphism can be determined by the solution of a system of
equations with O(n3/2) variables and equations.

Deciding IP is not NP-hard

(Unless the poly-time hierarchy collapses.)
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Find quadratic forms in the span of the public key polynomials
which have low rank.
Useful when the private key contains formulae with few variables.
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Low Rank Attack

Find quadratic forms in the span of the public key polynomials
which have low rank.
Useful when the private key contains formulae with few variables.

Dual Rank Attack

Find a small subspace in the kernel of much of the span of the
public polynomials.
Useful when the private key contains variables occurring in very
few formula.

9th Sept., 2013 Daniel Smith-Tone Quantum-Resistant MPKC 8/24



Quantum-Resistant Public Key Schemes
Basic Examples of Schemes

Summary

High Level-Fundamental Problems
Low Level-Structural Attacks

Rank Attacks

Low Rank Attack

Find quadratic forms in the span of the public key polynomials
which have low rank.
Useful when the private key contains formulae with few variables.

Dual Rank Attack

Find a small subspace in the kernel of much of the span of the
public polynomials.
Useful when the private key contains variables occurring in very
few formula.

Used to break triangular and “tame-like” schemes.

9th Sept., 2013 Daniel Smith-Tone Quantum-Resistant MPKC 8/24



Quantum-Resistant Public Key Schemes
Basic Examples of Schemes

Summary

High Level-Fundamental Problems
Low Level-Structural Attacks

Differential Attacks - Discrete Differential

Definition

The Discrete Differential of a map f : k → k is given by:

Df (a, x) = f (a + x)− f (x)− f (a) + f (0).
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Differential Attacks - Discrete Differential

Definition

The Discrete Differential of a map f : k → k is given by:

Df (a, x) = f (a + x)− f (x)− f (a) + f (0).

Elementary Properties

1 Linear operator.

2 Reduces complexity of a function: If f is quadratic, Df is
bilinear.

3 If f is quadratic, D(Tf (Ux + c) + d) = D(Tf (Ux)).
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DP

Let P = T ◦ f ◦ U. DP(a, x) = TDf (Ua,Ux).
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Differential Attacks - Differential of Multivariate Scheme

DP

Let P = T ◦ f ◦ U. DP(a, x) = TDf (Ua,Ux).

Differential Coordinate Forms

Since P has n coordinates, DP can be split into n bilinear
differential coordinate forms, DPi = TiDf (La, Lx), where Ti

represents the action of T on the ith coordinate.
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Differential Attacks - Differential of Multivariate Scheme

DP

Let P = T ◦ f ◦ U. DP(a, x) = TDf (Ua,Ux).

Differential Coordinate Forms

Since P has n coordinates, DP can be split into n bilinear
differential coordinate forms, DPi = TiDf (La, Lx), where Ti

represents the action of T on the ith coordinate.

Span of Forms

For all multivariate schemes, Span(DPi) ⊆ Span(D(f ◦ L)i ).
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General Linear Differential Symmetries

Df (La, x) + Df (a, Lx) = ΛLDf (a, x)
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Differential Attacks - Differential Symmetry

General Linear Differential Symmetries

Df (La, x) + Df (a, Lx) = ΛLDf (a, x)

Can be used to break SFLASH(C ∗−), MI(C ∗), SQUARE, ℓ-IC−,. . .
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Differential Attacks - Differential Symmetry

General Linear Differential Symmetries

Df (La, x) + Df (a, Lx) = ΛLDf (a, x)

Can be used to break SFLASH(C ∗−), MI(C ∗), SQUARE, ℓ-IC−,. . .

Determination Possible

In principle, the space of linear maps L satisfying such a relation
can be discovered (at least to live within a small subspace of the
space of all linear maps).
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Differential Attacks - Differential Invariants

First-Order Differential Invariants

The map f has a differential invariant if there exist V and W

subspaces of F n
q such that dim(W ) ≤ dim(V ) with the property

that Mv ∈ W for all M ∈ Span(Dfi) and for all v ∈ V .
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The map f has a differential invariant if there exist V and W

subspaces of F n
q such that dim(W ) ≤ dim(V ) with the property

that Mv ∈ W for all M ∈ Span(Dfi) and for all v ∈ V .

Can be used to break Oil-Vinegar, as well as several schemes
involving multiple-types of variables with artificial mixing.
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Differential Attacks - Differential Invariants

First-Order Differential Invariants

The map f has a differential invariant if there exist V and W

subspaces of F n
q such that dim(W ) ≤ dim(V ) with the property

that Mv ∈ W for all M ∈ Span(Dfi) and for all v ∈ V .

Can be used to break Oil-Vinegar, as well as several schemes
involving multiple-types of variables with artificial mixing.
Let MV be a projection onto V , then differential invariants induce
nonlinear symmetry (MW TMMV = 0 for all M ∈ Span(Dfi)).
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Differential Attacks - Differential Invariants

First-Order Differential Invariants

The map f has a differential invariant if there exist V and W

subspaces of F n
q such that dim(W ) ≤ dim(V ) with the property

that Mv ∈ W for all M ∈ Span(Dfi) and for all v ∈ V .

Can be used to break Oil-Vinegar, as well as several schemes
involving multiple-types of variables with artificial mixing.
Let MV be a projection onto V , then differential invariants induce
nonlinear symmetry (MW TMMV = 0 for all M ∈ Span(Dfi)).

Determination Possible

In principle, the space of linear maps MV satisfying such a relation
can be discovered (at least to live within a small subspace of the
space of all linear maps).
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Big Field Schemes
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The C
∗ Scheme

The C ∗ cryptosystem is the simplest example of a “big field”
scheme.

Construction

k

|
Fq

]

n We can identify x ∈ k with x ∈ F
n
q.

Encryption Scheme

y = P(x) = (T ◦ f ◦ U)x where f (x) = xq
θ+1.

(Df (a, x) = axq
θ

+ aq
θ

x .)
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We know that Df (v , v) = 0, since Df is antisymmetric.
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Trivial Differential Relation

We know that Df (v , v) = 0, since Df is antisymmetric.
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∗-Patarin’s Relation

Trivial Differential Relation

We know that Df (v , v) = 0, since Df is antisymmetric.

We Compute...

0 = Df (v , v)

= Df (v , uq
θ+1)

= vuq
2θ+qθ + vq

θ

uq
θ+1
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We Compute...

0 = Df (v , v)

= Df (v , uq
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= vuq
2θ+qθ + vq

θ
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Trivial Differential Relation

We know that Df (v , v) = 0, since Df is antisymmetric.

We Compute...

0 = Df (v , v)

= Df (v , uq
θ+1)

= vuq
2θ+qθ + vq

θ

uq
θ+1

= uq
θ
(
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2θ
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θ

u
)

Therefore, vuq
2θ

= vq
θ

u.
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Trivial Differential Relation

We know that Df (v , v) = 0, since Df is antisymmetric.

We Compute...

0 = Df (v , v)

= Df (v , uq
θ+1)

= vuq
2θ+qθ + vq

θ

uq
θ+1

= uq
θ
(

vuq
2θ
+ vq

θ

u
)

Therefore, (T−1y)(Ux)q
2θ

= (T−1y)q
θ

(Ux).
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HFE

Core Map

Let k be a degree n extension field of Fq and let f : k → k be

defined by f (x) =
∑

(i ,j)∈I α(i ,j)x
qi+qj where I is some index set

such that the pairs satisfy some degree bound qi + qj ≤ d .

9th Sept., 2013 Daniel Smith-Tone Quantum-Resistant MPKC 15/24



Quantum-Resistant Public Key Schemes
Basic Examples of Schemes

Summary

Big Field Schemes
Small Field Schemes

HFE

Core Map

Let k be a degree n extension field of Fq and let f : k → k be

defined by f (x) =
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(i ,j)∈I α(i ,j)x
qi+qj where I is some index set

such that the pairs satisfy some degree bound qi + qj ≤ d .

Vulnerable

The original proposal can be broken with algebraic attacks
involving Gröbner basis computations. This class of systems of
formulae generate easy MQ problems.
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Core Map

Let k be a degree n extension field of Fq and let f : k → k be

defined by f (x) =
∑

(i ,j)∈I α(i ,j)x
qi+qj where I is some index set

such that the pairs satisfy some degree bound qi + qj ≤ d .

Vulnerable

The original proposal can be broken with algebraic attacks
involving Gröbner basis computations. This class of systems of
formulae generate easy MQ problems.

We can make this more precise with degree of regularity results.
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To secure schemes from these attacks, several modifiers have been
developed.
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Modifiers

To secure schemes from these attacks, several modifiers have been
developed.

Most Important Modifiers

1 The minus (-) modifier: removing r of the public equations,
and

2 the vinegar (v) modifier: additional variables are added to the
system, the values of which are randomly assigned in the
inversion process.
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Multiplicative Attack on C
∗ and C

∗−

Definition [based on Dubois et al. (2007)]

A function f has the Multiplicative Symmetry if:
Df (σa, x) + Df (a, σx) = p(σ)Df (a, x) for all σ ∈ k .
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Df (σa, x) + Df (a, σx) = (σqθ + σ)Df (a, x),
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A function f has the Multiplicative Symmetry if:
Df (σa, x) + Df (a, σx) = p(σ)Df (a, x) for all σ ∈ k .

C ∗ monomial

Df (σa, x) + Df (a, σx) = (σqθ + σ)Df (a, x),
DP(U−1σUa, x) +DP(a,U−1σUx) = LσDP(a, x).
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Multiplicative Attack on C
∗ and C

∗−

Definition [based on Dubois et al. (2007)]

A function f has the Multiplicative Symmetry if:
Df (σa, x) + Df (a, σx) = p(σ)Df (a, x) for all σ ∈ k .

C ∗ monomial

Df (σa, x) + Df (a, σx) = (σqθ + σ)Df (a, x),
DP(U−1σUa, x) +DP(a,U−1σUx) = LσDP(a, x).

This relation provides a criterion for discovering the multiplicative
structure of k which undermines C ∗. Since this method doesn’t
require that T be invertible, this method works for C ∗− as well to
generate enough relations to turn it into C ∗.
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HFEv and HFEv-

HFEv

Let the core map be given by
f (x , v) =
∑

i ,j(αi ,jx
qi+qj +βi ,jx

qi vq
j

+ γi ,jv
qi+qj )+

∑

i aix
qi +

∑

i biv
qi + c ,

where v is restricted to a small subspace of k .
Inversion is accomplished by fixing the values of v and then
inverting the resulting set of HFE equations.
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HFEv and HFEv-

HFEv

Let the core map be given by
f (x , v) =
∑

i ,j(αi ,jx
qi+qj +βi ,jx

qi vq
j

+ γi ,jv
qi+qj )+

∑

i aix
qi +

∑

i biv
qi + c ,

where v is restricted to a small subspace of k .
Inversion is accomplished by fixing the values of v and then
inverting the resulting set of HFE equations.

If we use, in addition, the minus modifier we obtain HFEv−.
QUARTZ is an HFEv− scheme.
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Balanced Oil-Vinegar

The Core Map

Let f : F2o
q → F

o
q be a random quadratic map such that given

random constants c1, . . . , co ∈ Fq, f (x1, . . . , xo , c1, . . . , co) is affine
in x1, . . . , xo .
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The Core Map

Let f : F2o
q → F

o
q be a random quadratic map such that given

random constants c1, . . . , co ∈ Fq, f (x1, . . . , xo , c1, . . . , co) is affine
in x1, . . . , xo .

The Entire Map

The public map, P , is defined by P = f ◦ L for some affine map, L.

Inversion

Randomly choose c1, . . . , co , solve y = f (x1, . . . , xo , c1, . . . , co),
compute L−1(x1, . . . , xo , c1, . . . , co)

T .
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Differential Version of Kipnis-Shamir Attack

Trivial Differential Property of Core Map

Let O represent the subspace generated by the first o coordinates.
For all a, x ∈ O, Df (a, x) = 0. Therefore each differential
coordinate form, Dfi , has the form:

[

0 Dfi1
Df Ti1 Dfi2

]

.

9th Sept., 2013 Daniel Smith-Tone Quantum-Resistant MPKC 20/24



Quantum-Resistant Public Key Schemes
Basic Examples of Schemes

Summary

Big Field Schemes
Small Field Schemes

Differential Version of Kipnis-Shamir Attack

Trivial Differential Property of Core Map

Let O represent the subspace generated by the first o coordinates.
For all a, x ∈ O, Df (a, x) = 0. Therefore each differential
coordinate form, Dfi , has the form:

[

0 Dfi1
Df Ti1 Dfi2

]

.

Differential Invariant

Let M1 and M2 be two invertible matrices in the span of the Dfi .
Then M−1

1 M2 is an O-invariant transformation of the form:

[

A B

0 C

]

.
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Broken

Find the Invariant Subspace

Since D(f ◦ L)i = LTDfiL, an attacker needs only find two
invertible maps, M1,M2, in the span of DPi , and find the invariant
subspace of M−1

1 M2.
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Broken

Find the Invariant Subspace

Since D(f ◦ L)i = LTDfiL, an attacker needs only find two
invertible maps, M1,M2, in the span of DPi , and find the invariant
subspace of M−1

1 M2.

New Decryption Map

Once recovered, the attacker produces a change of basis, M,
sending the basis of O to the first o standard basis vectors. The
attacker can then sign a document by the same method as the
legitimate user.
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UOV

Unbalanced Oil-Vinegar

Increase the number of vinegar variables.
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UOV

Unbalanced Oil-Vinegar

Increase the number of vinegar variables.

SIDE NOTE: There is an interesting natural parametrization within
HFE and UOV.
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Most practical attacks are structural and work against a
subclass of systems.
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Summary

Conclusions

Most practical attacks are structural and work against a
subclass of systems.

Quantum complexity theoretic results on MP/IP/IP1S
would be very interesting.

Quantum algorithms for some of these generic problems?

Quantum enhancements (polynomial or exponential speedup)
for structural attacks?
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Done

Thanks!

I will post some references when I wake up.
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