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1 Introduction

Multivariate cryptography refers to the subfield of information security con-
structing and analyzing primitives that are expressed and evaluated as functions
of many variables. There are many variations on the theme of multivariate cryp-
tography we ignore for our purposes, some of which intersect with other fami-
lies of post-quantum cryptography, see, for example, the multivariate emulation
of LWE in [1], and some of which are not central to the study or relevant to
understanding the context of the Round 1 multivariate post-quantum digital
signature candidates, see, for example, the schemes based on noncommutative
Ore polynomials in [2]. Thus we begin with a brief overview of the main branch
of multivariate public key cryptography utilizing public systems of multivariate
polynomials in a commutative polynomial ring. As a note, nominally the main
relevant branch of mathematics for comprehension of this area is algebraic ge-
ometry, however, in practice, rarely are any results beyond commutative algebra
required.

One of the hard computational problems on which the security of many mul-
tivariate cryptosystems is based is the problem of solving systems of multivariate
equations.
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Problem 1 (MQ) The multivariate quadratic (MQ) problem is the problem of
solving a multivariate quadratic system of equations over a field. The decisional
problem is known to be NP-hard over any field, and over finite fields it is NP-
complete.

Proof. Let K be a field and let P be an instance of SAT on n predicates,
X1, . . . , Xn, where, clearly, n is at most linear in ‖P‖. Then Q = {P̂ , x21 −
x1, . . . , x

2
n − xn}, where P̂ represents the boolean formula in the variables xi

corresponding to P , is anMQ instance constructible in linear time and of length
linear in ‖P‖. Since K is a field, any solution must assign xi the value 0 or 1,
which is interpreted as assigning the corresponding truth value for the predicate
Xi. Thus a solution to the decisional MQ instance Q decides P . Furthermore,
if K is finite, then it is easy to show that the length of the calculation for any
witness is polynomial in the size of the MQ instance.

Empirically, we have evidence that solving systems of multivariate quadratic
equations is generically hard, so a valid technique for constructing a cryptosys-
tem is to find a class of quadratic vector-valued functions on a vector space that
is easy to invert, and transform it into a system that appears random.

Both of these tasks present challenges. The standard technique for the sec-
ond task is computing a morphism of the system in an attempt to remove the
properties allowing the system to be inverted. Techniques for the prior task are
more varied; we discuss two methodologies for constructing efficiently invertible
systems in the following subsections. As a side note, the use of these morphisms
introduces some additional complexity theoretic dependencies for most multi-
variate schemes; we discuss these security issues and some known results in
Section 3.

2 Classifications of Multivariate Cryptosystems

The field of multivariate cryptography is fairly broad and motivated by disparate
ideas. In this section we offer an atlas that will be useful in comparing specific
schemes. Some properties of the cryptosystems allow us to group them into
families with similar properties in terms of efficiency, attack methodology and
known security properties. A useful characterization of a multivariate scheme
can be achieved by answering, in order: From what structure are the nonlinear
multiplication operations derived? How is efficient inversion accomplished?

2.1 The Big Field Setting

One family of multivariate cryptosystems are collectively known as “big-field”
schemes; though the same idea generalizes in a natural way to what one might
call “big-algebra” schemes. Such schemes use the multiplicative structure of an
algebra A over a “base” field F, to construct an easily invertible map. The vector
space structure of A easily allows one to pass between univariate functions over
A and multivariate functions over Fn. See Figure 1.



NIST PQ Round 1 Multivariate Signatures Survey 3

Fn Fn

A A

F

φ

f

φ−1

Fig. 1. The structure of a “big-algebra” map. The map φ is a F-vector space isomor-
phism, F is a vector-valued function on Fn, and f is an univariate function over A.

The progenitor of all “big field” schemes is commonly known as C∗, or the
Matsumoto-Imai scheme, see [3]. This scheme exploits the fact that the extension
field K is an F-algebra to produce two versions of a function— a vector-valued
version which is quadratic over the base field, and a monomial function whose
input and output lie in the extension field. Specifically, the C∗ central map is
the univariate function f : K→ K defined by

f(X) = Xqθ+1,

where |F| = q, |K : F| = n, and (qθ + 1, qn − 1) = 1. The final condition
ensures that the power map is invertible in K∗. To complete the construction,
one composes invertible affine maps to produce the public key P(x) = T ◦F ◦U .
The C∗ scheme can be considered a sort of multivariate version of RSA; in fact,
inversion of F is accomplished in exactly the same way as RSA, that is, by
exponentiation by the multiplicative inverse of the encryption exponent modulo
the size of the unit group.

Many schemes can be derived from this framework by altering various com-
ponents of this basic structure. There are three categories of such alterations:
one can choose a different central map; one can modify the central map in some
specific generic way preserving efficient invertibility; or one can make one or
both affine transformations non-invertible. Of course, these modifications can be
taken together as well.

The cryptanalysis of the C∗ scheme by Patarin in [4] inspired many big field
constructions. In [5], Patarin introduced the Hidden Field Equations (HFE)
cryptosystem, a natural generalization of the monomial based C∗ in which the
monomial map is replaced with a low degree polynomial which allows efficient
inversion via the Berlekamp algorithm, see [6]. Also described by Patarin in [7]
is the minus modifier (the removal of public equations) which can be applied
to both HFE, producing HFE−, and to C∗, creating C∗−, as well as the plus
modifier (the addition of random equations in the central map that can be
ignored on inversion) and the projection modifier (the assignment of one or
more input variables to constant values before the publication of the key). In [8],
the vinegar modifier (the addition of variables in the central map the values of
which can be randomly assigned upon inversion) is introduced in the QUARTZ
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scheme. Also, in [9], the internal perturbation modifier (the addition of a random
summand with a small support) is used to produce the PMI cryptosystem.

The part of the history of “big-field” multivariate cryptography in the early
2000s in which the community was just beginning to understand the modifiers
and their interactions was very tumultuous, as it was for “small-field” schemes
as well. It took nearly a decade for the community to get a solid understand-
ing of what cryptanalytic techniques were thwarted by various combinations of
modifiers and to understand what weaknesses were accessible in spite of the
modifiers. Eventually, in the early 2010s we developed techniques to prove secu-
rity against classes of attacks that had ravaged the field earlier, see, for example
[10–14] which develop the framework for proving security against differential
techniques.

Though the confusion of the early 2000s illustrates that it is a good idea to
remain cautious with multivariate schemes, there are a few “big-field” schemes
that have survived in essentially their original form from this period or even
before. The original HFE− Challenge from [5] at the 80-bit level has only recently
been conclusively shown in [15] to provide no more than 79 bits of security!
(The authors argue that this number may be reduced further since experiments
show that the linear algebra steps seem significantly faster than the Strassen
Algorithm as toy instances grow in size; still, a very small parameter change
secures the scheme.) The original QUARTZ proposal in [8] uses parameters that
are definitely overkill and are still secure. PFLASH originally proposed in [7] is
still secure and is provably resistant to the attacks that broke its closest relatives,
see [16]. Thus the technique seems viable and long-lived with some schemes over
two decades old.

2.2 The Small Field Setting

“Small field” schemes are multivariate cryptosystems that make use of only one
field for generating a nonlinear map. Lacking the additional algebraic structure
big field schemes use to hide easily invertible multiplication operations, small
field schemes typically use a secret structure based on rank or on a partition
of the variables to allow efficient invertibility. Of these two methods, one has
proven to be far superior.

The first “small field” scheme was the oil-vinegar scheme of [17]. This scheme
specifies two types of variables: the oil variables, which occur only linearly in the
secret central map; and the vinegar variables, which occur quadratically. Thus
the hidden map of the oil vinegar scheme has the form∑

0≤i<2n,n≤j<2n

αi,j,`xixj +
∑

0≤i<2n

βi,`xi + γ` for 0 ≤ ` < n;

see Figure 2(a) for a visualization of each such map. Such a function is easy to
invert because assigning random values to all of the vinegar variables transforms
the function into an affine map, which is easily invertible.

Clearly, this class of multivariate system is invariant under left composi-
tion by affine maps; that is to say, for all such maps F with the property that
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(a) OV (b) UOV

Fig. 2. The shape of the matrix representations of the polar form (or discrete dif-
ferential) of each central map of (a) oil-vinegar and (b) unbalanced oil-vinegar. The
shaded regions represent possibly nonzero values while unshaded areas have coefficients
of zero. Note that this diagram only provides information about the quadratic terms
in the central maps, as the discrete differential of the affine summand is zero.

F (x0, . . . , xn−1, cn, . . . , c2n−1) is affine for any constant (cn, . . . , c2n−1) and for
all affine maps T , the composition T ◦F (x0, . . . , xn−1, dn, . . . , d2n−1) is also affine
for any constant (dn, . . . , d2n−1). Thus, it is not necessary to compose the se-
cret oil-vinegar map with an affine transformation mixing the outputs. The oil-
vinegar scheme is then presented as P(x) = F ◦ L, for some affine map L. (The
name comes from the separation of oil and vinegar after they are mixed. This
name does not seem to inspire much confidence since oil and vinegar separate
on their own without intervention. Is it not a more intimidating task to separate
salt and water or vinegar and sodium bicarbonate after mixed?)

The original proposition of oil-vinegar used the same number of oil variables
as vinegar variables and was quickly broken by Kipnis and Shamir in [18]. We will
provide more details of this attack in the next section. Importantly, the attack
used in a critical way the balance between oil variables and vinegar variables.
When the number of oil variables and vinegar variables are sufficiently separated,
the attack becomes infeasible. The resulting scheme, with usually two to three
times as many vinegar variables as oil variables, is called unbalanced oil-vinegar
(UOV), see Figure 2(a) for a comparison between oil-vinegar and UOV. The
number of equations in the system needs to be as large as the number of oil
variables to make inversion likely, and having these numbers be equal is optimal.

Another scheme derived from this idea of partitioning the variables is Rain-
bow. Rainbow was introduced in 2005, see [19], as a generalization of UOV
to many layers. Instead of every secret polynomial having the same structure,
Rainbow divides the secret polynomials into layers or bands each of which
have an UOV structure, but with different sets of oil and vinegar variables.
Specifically, a Rainbow scheme with u layers is defined by defining the integers
0 < v1 < . . . < vu < n and the index sets V1 = {1, . . . , v1}, V2 = {1, . . . , v2}, . . . ,
Vu = {1, . . . , vu}. Further, we define the index sets Oi = Si+1\Si for 1 ≤ i ≤ u−1
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(a) Layer 1 (b) Layer 2

Fig. 3. The shape of the matrix representations of the polar form (or discrete differ-
ential) of each layer of the central map of a bi-layer Rainbow: (a) Layer 1 and (b)
Layer 2. The shaded regions represent possibly nonzero values while unshaded areas
have coefficients of zero. Note that this diagram only provides information about the
quadratic terms in the central maps, as the discrete differential of the affine summand
is zero.

and Ou = {vu + 1, . . . , n}. Then an `th layer Rainbow map has the form∑
i∈O`,j∈S`

αi,j,`xixj +
∑
i,j∈S`

βi,j,`xixj +
∑

i∈S`∪O`

γi,` + δ`.

The central map consists of |O`| such maps for each layer `, see Figure 3 for a
visualization. This allows inversion to be performed layer by layer, since assigning
values to the variables indexed in V1 transforms the layer 1 maps into affine maps
in the variables indexed by O1. After we solve for these values, we have obtained
values for all of the variables indexed in V2, and we may continually solve, layer
by layer, until the values of all of the variables are recovered.

Another subfamily of “small field” multivariate schemes can be called the
“step-wise triangular schemes.” There are various flavors of such schemes as well
as various motivations for them.

The oldest of these, known as the Tame Transformation Method (TTM) de-
fined by T. T. Moh (also TTM!), see [20], is motivated by an important class
of automorphisms of affine spaces arising in some investigations of the famous
Jacobian conjecture, see [21], of algebraic geometry. This scheme was broken
in [22]. The attack was denied by Moh who published a sequence of articles
with tweaks or clarifications that were al broken by the same sort of idea. First,
T. Moh published [23] simply denying that the attack worked while simulta-
neously producing a patch to prevent the attack. This paper was followed by
another parameterization given in [24] that reiterated that the attack of [22]
should not be trusted. Then all of these instances were broken in the paper [25].

At this point, T. Moh seems to have accepted that the attacks were real and
offered a further patch in [26] which claimed to resist the above attacks with the
addition of what they called “lock polynomials.” Still, the new parameters were
broken in [27] with an extension of the ideas developed in the previous attacks
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to produce a message recovery attack bootstrapping a precomputation relying
only on the public key.

Once again, T. Moh claimed to be a victim and denies the attack in [28],
saying that he believed that the authors of [27] had actually used a component
of the private key in the attack. He then published [29] with two new challenge
instances of TTM without describing the decryption process and thus leaving
secret the structure of the lock polynomials. Finally, the same team of crypt-
analysts immediately broke these instances in [30] without ever learning the
structure of the lock polynomials. Finally, this ugly chapter seemed to close as
there was less interest in breaking the same idea multiple times with the same
code.

A close relative to the TTM family is the main line of triangular schemes
originating in Shamir’s birational permutation scheme over large rings in [31].
A very similar idea emerged which was called the sequential solution method
(SSM) in [32]. These ideas were extended to construct the RSE system of [33]
and was further adapted in [22] where the authors made it clear that TTM was
a particular example of a more general idea that was broken. They called this
more general scheme triangle-plus-minus (TPM), which was further generalized
into what we now call step-wise triangular schemes (STS) in [34]. There have
since been numerous variations on the theme including [35–37]. They are all
very similar and the simplest exposition to provide a good understanding of all
of them is to present the generic STS constructions of [34].

Unlike the oil-vinegar type schemes, the STS-style schemes require affine
maps mixing both the inputs and outputs of the secret central map F . Thus
a public key looks like P = T ◦ F ◦ U . All such schemes can thus be modified
by projection and minus modifiers to achieve different properties. The critical
structure in the STS family is the structure of the central map.

The central map of a generic STS instance is defined by selecting integers
0 = u0 < u1 < . . . < uk = n, and random quadratic maps yi = ψi(xi), where
xi = (x1, . . . , xui) and dim(yi) = ui − ui−1 for i = {1, . . . , k}. The central map

is then the direct sum
⊕k

i=1 ψi, see Figure 4 for a visualization.

3 Overview of Known Cryptanalytic Methods and
Security Constructs

There are several approaches to cryptanalysis for multivariate schemes. They
can informally be characterized as algebraic, differential, rank, statistical search
or quantum. This informal classification is not exclusive and is at best only
loosely descriptive. For example, there are various methods for rank attacks and
some of them rely on something we could call a statistical search. Another case
of overlap would be bootstrapping algebraic attacks for statistical techniques.
Each of these families of attacks can be employed for both “big field” and “small
field” schemes, so we organize the exposition primarily by the attack type and
variations and secondarily by chronological order.
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(a) Layer 1 (b) Layer 2

· · ·

(c) Layer k

Fig. 4. The shape of the matrix representations of the polar form (or discrete differ-
ential) of each layer of the central map of a generic STS system. The shaded regions
represent possibly nonzero values while unshaded areas have coefficients of zero. Note
that this diagram only provides information about the quadratic terms in the central
maps, as the discrete differential of the affine summand is zero.

While this section is intended to provide a detailed overview of multivariate
cryptanalysis, it will not be exhaustive. The section should elucidate, however,
all of the main themes on which attacks in the literature are based. Thus, this
cyclopedia should approximate fairly closely the current state of knowledge in
cryptanalytic techniques.

3.1 Algebraic Attacks

Algebraic attacks directly try to solve some complexity theoretic problems in-
volving multivariate polynomial systems. There are two principal problems and
their variations that have been studied and used for cryptanalysis and security
analysis in multivariate cryptography. The first of these problems is the MQ
problem and the second is the following:

Problem 2 (MP) The morphism of polynomials (MP) problem is the problem
of finding a morphism of polynomials between two polynomial systems F and G;
that is, of finding two affine transformations T and U such that G = T ◦ F ◦U .
The decisional problem is known to be NP-hard over any field, and over finite
fields it is NP-complete, see [38].

The main technique for directly solving an instance of MQ seems to always
have been specifying an elimination monomial ordering refining total degree and
computing a Gröbner basis for the ideal generated by the multivariate system.
Such a Gröbner basis generically has polynomials with only a single variable
which can then be solved efficiently reducing the dimension of the system. Thus
the dominant term in the complexity of any algorithm solving MQ is basically
the Gröbner basis computation. (As a side note, there was a great deal of work
in the early 2000s on the XL family of algorithms inspired by relinearization in
[39] and popularized by [40]. These algorithms are competitive with, but usually
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outperformed by, modern Gröbner basis algorithms. In fact, the performance
of such algorithms can be emulated by modern Gröbner basis algorithms by
replacing certain function calls. Thus we do not address directly the development
of XL variants.)

The first effective algorithm for computing Gröbner bases was Buchberger’s
algorithm presented in [41]. The algorithm is doubly-exponential in the worst
case; there are known pathological examples that meet this theoretical bound.
Since the late 90s, however, far superior algorithms have been developed. The
best generic performance has been achieved by Faugere’s F4 algorithm, see [42].
A more advanced but specialized version known as F5 can be even faster, see
[43], but the exposition is very unclear and has errors. It is known that the
algorithm has been successful at solving a multivariate system that was beyond
the reach of F4, see [44], but it is not widely believed that the application of F5
can be as universal as was suggested in [43].

One of the first cryptanalyses by direct algebraic attack via Gröbner bases
was the cryptanalysis of HFE over GF (2) in [44]. This method of attack is
surprisingly effective over GF (2) and is often the attack which determines the
parameters of multivariate schemes. This fact is interesting to note because this
direct algebraic attack is usually the only known message-recovery attack for a
multivariate scheme.

One particular quantity that is relevant in determining the complexity of
Gröbner basis techniques is the degree of regularity. This quantity has been
defined many times in an inconsistent manner. Part of the reason for this is
that there are many algebraic notions of regularity. A few relevant examples are
Castelnuovo-Mumford regularity (the minimum difference of the index of a free
module and the largest degree among its generators in a minimal graded free
resolution of the ideal as a graded module over the polynomial ring), Hilbert
regularity (the dimension beyond which the Hilbert function of the quotient
of the polynomial ring by the ideal becomes a polynomial), the solving degree
(the degree at which linear algebra alone produces minimal generators forming
a Gröbner basis), the semi-regular degree (the smallest degree of a nontrivial
relation between members of the ideal assuming that the ideal has as few rela-
tions as is possible) and the first fall degreee (the degree at which a nontrivial
syzygy, that is, a symmetry that is not generic to all ideals regardless of dimen-
sion, is found). Of these, evidence seems to indicate that Castelnuovo-Mumford
regularity and the solving degree may almost always be equal, they are usually
bounded from above by the Hilbert regularity, the smallest of these is the first
fall degreee, and the semi-regular degree is somewhere between the first fall de-
greee and the Hilbert regularity. Most careful analysis of multivariate systems
tries to measure the first-fall degreee and conservatively assumes that the solving
degree is essentially the same. This assumption can definitely fail for multivari-
ate systems in general and makes a meaningful difference in the rank analysis of
LRPC schemes.

The best known method for directly solving an instance of MQ (at least
asymptotically over fields larger than GF (2)) is known as the hybrid technique.
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Let F be a multivariate system of m equations in n indeterminants. A basic
result from commutative algebra is that the expected dimension of the space of
solutions is n − m. If m > n, then we say that the system is overdetermined,
if m = n the system is determined, and if m < n the system is said to be
underdetermined. For any underdetermined system it is more efficient to preface
a Gröbner basis calculation with a random assignment of m − n variables to
constant values. It is still expected that there is a zero-dimensional solution
space, which can be found via the Gröbner basis calculation. In some instances,
however, and in particular if the system is defined over a small field, it can be
more efficient to guess some additional variables before computing the Gröbner
basis. Since the first fall degreee is monotonically nonincreasing under proper
containment of generators, adding additional relations by setting more variables
can decrease the complexity of the Gröbner basis step. The hybrid technique
attempts to optimize the tradeoff between guessing correct values for variables
and decreasing the first fall degreee.

A significant issue of the main Gröbner basis techniques, such as F4, is that
time is on the order of sω where 2 ≤ ω < 3 is the linear algebra constant and s
is the size of some large matrix in the computation, while space is on the order
of s2. We are typically justified in saying that ω is no larger than 2.81 as long
as we can use a few bits to handle the constants in the big-oh, but an attack
at, say, the 256-bit level must still use space on the order of 2183. This means
that if we can barely break a scheme with F4 at the 256-bit security level, then
assuming that we can create atomic scale memory with an average atomic weight
comparable to carbon, it would require more than 300 Earth-masses of memory
to complete the calculation.

As a final note on the MQ problem, there is a body of work devoted to
theMQ problem over GF (2). This line of research is directed at optimizing ex-
haustive search methods as well as alternative algorithms in the case of GF (2).
A particular requirement of these algorithms is efficiency in memory usage, ad-
dressing the above concern about the feasibility of cryptanalysis via F4. Some
results in this direction include [45], analyzing exhaustive search, [46], an inter-
esting new advance in solving boolean systems that appears to be the current
record-holder for classical CPU system solvers, and [47], applying the above
techniques in GPU arrays.

The MP problem actually lends itself to a very similar analysis. The main
method of directly solving theMP problem in the quadratic case is to model it
as a system of bi-affine equations and try to solve the system directly via Gröbner
basis techniques. There are techniques that marginally speed up Gröbner basis
calculations for bi-affine systems, see [48]; however, the instances ofMP relavant
for cryptography are very large and this technique does not seem to be useful.

There are some other variations on the MP problem that are relevant to
cryptography. One is the Isomorphism of Polynomials (IP) problem. This prob-
lem addresses instances of MP where it is known that the affine maps must
be invertible. It was shown in [38] that this problem is not NP-hard unless the
polynomial-time hierarchy collapses to the second level. An additional related
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problem is the IP1S problems (refering to IP with one secret affine transforma-
tion). This problem is claimed to be in P in the quadratic case with a solution
given in [49]. The last the author checked, there is an error in Proposition 9,
therein, though it seems that Proposition 9 might be true generically. Thus, the
result is probably both wrong and trustworthy. A last important note is due: the
statement of the IP1S instance provides two potentially isomorphic systems of
polynomials; thus, the solution to IP1S only breaks a scheme like UOV if one can
successfully guess the nonlinear portion of the private key. Therefore, the sig-
nificance of results like [49] for schemes with an appropriate amount of entropy
in the private key space is primarily in providing tools for accurately counting
equivalent keys, thus establishing the direct connection between entropy in the
private key space and entropy in the public key space.

3.2 Differential Attacks

A second class of attacks, the differential attacks, utilize a special form of differ-
ential that can be useful in translating certain properties of nonlinear functions
into properties of linear maps that can be analyzed with linear algebra tech-
niques. The differential of a field map, f , is defined by

Df(a, x) = f(a+ x)− f(a)− f(x) + f(0).

Various cryptanalyses can be viewed through the lense of differential techniques.
It is reasonable to say that a general lack of understanding of differential secu-
rity caused many of the growing pains in “big field” multivariate cryptography
through the mid 2000s.

As an example, we can even consider Patarin’s initial attack, in [4], on Imai
and Matsumoto’s C∗ scheme, see [3], as the exploitation of a trivial differential

symmetry. Suppose f(x) = xq
θ+1 and let y = f(x). Since the differential of f ,

Df , is a symmetric bilinear function,

0 = Df(y, y) = Df(y, xq
θ+1)

= yxq
2θ+qθ + yq

θ

xq
θ+1

= xq
θ

(yxq
2θ

+ yq
θ

x).

Dividing by xq
θ

we have Patarin’s linear relation, yxq
2θ

= yq
θ

x; see [50] for
details.

Differential methods provide powerful tools for decomposing a multivariate
scheme. To illustrate the versatile nature of differential attacks, we review the
attack of Kipnis and Shamir, see [18], on a non-big-field system, the oil and
vinegar scheme. Though they use differing terminology, the attack exploits a
symmetry hidden in the differential structure of the scheme.

Recall that the oil and vinegar scheme is based on a hidden quadratic system
of equations, f : kn → ko, in two types of variables, x1, ..., xo, the oil variables,
and xo+1, ..., xo+v=n, the vinegar variables. We focus on the balanced oil and
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vinegar scheme, in which o = v. Let c1, ..., cv be random constants. The map f
has the property that f(x1, ..., xv, c1, ..., cv) is affine in x1, ..., xv. The encryption
map, f is the composition of f with an n-dimensional invertible affine map, L.

Let O represent the subspace generated by the first v basis vectors, and let
V denote the cosummand of O. Notice that the discrete differential given by
Df(a, x) = f(x+ a)− f(x)− f(a) + f(0) has the property that for all a and x
in O, Df(a, x) = 0. Thus for each coordinate, i, the differential coordinate form
Dfi can be represented:

Dfi =

[
0 Dfi1

DfTi1 Dfi2

]
.

Let M1 and M2 be two invertible matrices in the span of the Dfi. Then
M−11 M2 is an O-invariant transformation of the form:[

A B
0 C

]
.

Now the Dfi are not known, but D(f ◦ L)i = L>DfiL, so the L>DfiL are
known. Notice that if M is in the span of the Dfi, then L>ML is in the span of
the L>DfiL. Also, since (L>M1L)−1(L>M2L) = L−1M−11 M2L, there is a large
space of matrices leaving L−1O invariant, which Kipnis and Shamir are able
to exploit to effect an attack against the balanced oil and vinegar scheme; see
[18] for details. Making the oil and vinegar scheme unbalanced, see [51], corrects
this problem by making it very unlikely that any subspace is invariant under a
general product M−11 M2.

While the first of the above attacks exploits a symmetric relation exhibited
by the differential of the central map, the second attack utilizes an invariant of
the differential. Both of these ideas generalize and have been used as the basis
for cryptanalysis (as opposed to these examples which are fit into the differential
cryptanalysis mold after the fact).

The first cryptanalysis that was actually discovered using differential tech-
niques was the attack by Dubois et al. in [52] of a popular iteration of C∗− called
SFLASH, see [53]. SFLASH was extremely efficient and was fast even on the
cheapest smart cards. The attack broke SFLASH by way of a symmetric differ-

ential relation present in the central monomial map. Note that for f(x) = xq
θ+1,

that Df(a, x) = axq
θ

+ aq
θ

x. Therefore, for any element σ ∈ K, we obtain the
relation

Df(σa, x) +Df(a, σx) = (σq
θ

+ σ)Df(a, x). (1)

Composing with the affine transformations T and U we obtain the following
relation on the C∗ scheme P without the minus modifier

DP(Nσa,x) +DP(a,Nσx) = ΛσDP(a,x),

where Nσ is of the form U−1MσU where Mσ is the matrix representation over
Fq of left multiplication by σ. Since the discrete differential operator D is linear,
for any linear map Π, Π ◦Df = D(Π ◦ f); thus, applying the minus projection
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Π to the above equation we reveal the following differential symmetry on the
C∗− public key PΠ .

DPΠ(Nσa,x) +DPΠ(a,Nσx) = Λ′σDP(a,x).

Here, we notice that given a map Nσ we can produce linear combinations of
all coordinates of DP. In this way, we can recover enough linearly independent
coordinates of DP to produce a full rank C∗ public key compatible with the C∗−

key, at which point Patarin’s linearization equations attack breaks the scheme
completely. (It is important to note that the above symmetry is linear in the
unknown coefficients of Nσ and Λ′σ. Furthermore, the map DP on the right side
is not known completely. So the technique to derive such a map Nσ is to require
that the first few coordinates of the left hand side lie in the span of the known
coordinates of the differential. A simple calculation shows that this technique
works for the original parameters of SFLASH and with a distillation technique,
it was shown that as many as half of all equations could be removed by the
minus modifier and still the attack works.)

The SFLASH attack relied on the multiplicative symmetry of Equation 1
which looks like the expression in the differential of the fact that f is a mul-
tiplicative function. Still, the attack only seems to require that some Fq-linear
maps can be filtered through the differential; in particular, the same attack broke
some other schemes that were variations on the theme of SFLASH, see [54], as
an example, breaking the `IC scheme of [55]. This observation motivates a more
general definition of a linear differential symmetry.

Definition 1 Let f : Fnq → Fmq be Fq-quadratic. Then f is said to have a linear
differential symmetry if there exist affine maps L and ΛL such that

Df(La,x) +Df(a, Lx) = ΛLDf(a,x).

It is easy to prove that this is the most general form of linear symmetric relation
on the differential of such a vector function. This statement means that given
any relation on the differential of a map f which is linear in the coefficients of
linear maps, then f satisfies a relation of the above form. Thus, this object is
the only thing one needs to study to fully understand differential symmetry.

The nice thing about such a generalized and abstract definition encompass-
ing all such attacks is that it provides a tool for precisely determining when such
attacks are viable. In [11], the subspace of all linear maps L inducing a linear
differential symmetry is derived for C∗, SFLASH, and the SQUARE cryptosys-
tem, see [56]. This result is bootstrapped from the results on the multiplicative
symmetry first presented in [10]. It is also shown that the projected SFLASH
(where both affine transformations are singular), known as PFLASH is immune
to differential symmetric attacks as suggested in [57] provided that the projec-
tion map and C∗ map satisfy some mild conditions. Finally, a heuristic argument
is also provided in [11] that HFE has no linear differential symmetry.

In [12], a generalization of the differential invariant version, presented earlier
in this section, of the Kipnis-Shamir attack on oil-vinegar of [18] is produced.
The authors defined a differential invariant in the following way.
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Definition 2 Let f : Fnq → Fmq be a quadratic map. We say that f has a differ-

ential invariant (V,W ) if 〈Ax,y〉 = 0 for all x ∈ V , all y ∈ W⊥ and all A in
the span of Df , where dim(W ) ≤ dim(V ).

The definition is designed to capture the phenomenon of all coordinates of the
differential simultaneously sending some fixed subspace into another fixed sub-
space. (This occurence is the weird action taking place in the oil-vinegar map.
The oil subspace is simultaneously mapped into the vinegar subspace by all co-
ordinates of the differential.) The authors then proved that several “big field”
schemes do not have differential invariants. The entire discussion was highly
speculative since the only example provided of an actual cryptanalysis involving
differential invariants was only classified as a differential invariant attack a pos-
teriori. Thus, the paper seems to make a claim something like, “This fence will
contain any unicorn.”

By some manner of fortune, the differential invariant technique was soon
justified (at least in a slightly generalized form) by a differential invariant attack,
see [58], on the ABC Simple Matrix Encryption Scheme of [59]. This attack and
the subsequent variations on it, see [60–62], generalized Definition 2 to subspace
differential invariants, where A is only required to lie in some specified subspace
of the span of Df .

The above attacks justify differential invariant analysis, and reveal an in-
teresting relationship between differential invariants and certain rank defects in
multivariate schemes. In particular, each of these attacks is a form of a rank at-
tack with what is called in [63] interlinked kernels. The distinction between these
differential invariant attacks and the older rank attacks on interlinked kernels
is that the invariant structure allows the attacker to use the “invariant trick”
demonstrated in the Kipnis-Shamir attack to somewhat speed up the analy-
sis. Another important distinction is that the precise definition makes proving
that a map has no differential invariants straightforward. This analysis was used
to prove differential security for HFE, HFE−, HFEv−, ZHFE (see [64]), and
PFLASH in [65, 14, 66, 67, 16].

One can consider the Rainbow Band Separation attack of [68] a differential
attack on the Rainbow scheme. The attack is based on the fact that given the
central map of a Rainbow instance f , there exists a linear map L projecting onto
the last oil layer such that Df(La, Lx) = 0. One can let the unknown coefficients
of this map L be variables and define a quadratic system that is overdefined.
Empirically, these systems appear to be semi-regular, so we can easily estimate
the degree of regularity of such systems. The complexity of such an attack is

O
((
n+dreg
dreg

)o
mega

)
, where omega is the linear algebra constant.

3.3 Rank Attacks

Another historically important class of attack is the rank attack. There are
several versions of this attack and they are applicable in general for “big field”
schemes and “small field” schemes. In addition to the variety of types of rank
attack, there are also multiple techniques for implementing such attacks. We will
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classify rank attacks into four overlapping camps: 1) low rank— recovering a low
rank linear combination of the matrix representations of the public quadratic
forms (or their differentials); 2) high rank— recovering a linear combination of
the public quadratic forms representing a polynomial avoiding a large class of
monomials; 3) dual rank— recover a small subspace that is in the kernel of every
matrix in a large subspace of the span of the public quadratic forms; and 4) Q-
rank— recover a linear combination of the public quadratic forms that is low
rank when viewed as a quadratic form on an algebra over an extension field. The
fourth category is only a reasonable possible weakness for “big field” schemes;
however, all of the first three categories are applicable to both “big field” and
“small field” schemes.

The first of these attacks, the low rank attack, is equivalent to a well-studied
problem, the MinRank problem. The computational MinRank problem can be
stated as follows. Given k matrices of dimension p×q over a field F, find a linear
combination of rank at most r. The decisional version of the MinRank problem
is known to be NP -complete, see [69], and seems difficult in practice.

There are three main methods for solving the MinRank problem; the most
efficient depends on the parameters of the instance. The first method for solving
this problem in the cryptonomy used Kipnis-Shamir modeling with relineariza-
tion, see [39].

A little setup is necessary to get to what the Kipnis-Shamir modeling actu-
ally is. In this paper, the authors present an attack on the HFE cryptosys-
tem exploiting the fact that the quadratic form representing the HFE cen-
tral map over an algebra over the extension field has low rank. This quan-
tity is known as the Q-rank of the map. Specifically, we consider the K-algebra
A = {(a, aq, aq2 , . . . , aqn−1

) : a ∈ K}. Then a map of the form

f(x) =
∑

qi+qj<D

αi,jx
qi+qj

can be equivalently written as a quadratic form on A:

(
x xq · · · xqn−1

)


α00 α0,1/2 · · · α0,r−1/2 0 · · · 0
α0,1/2 α1,1 · · · α1,r−1/2 0 · · · 0

...
...

. . .
...

...
. . .

...
α0,r−1/2 α1,r−1/2 · · · αr−1,r−1 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0


(
x xq · · · xqn−1

)>
,

where r − 1 < logq(D). Thus, we would say that the map f has Q-rank r. The
method presented in [39] is to interpolate a representation of the public key as
an univariate map over K, compute all of the Frobenius powers of this map,
write down their matrix representations as quadratic forms on A, and solve the
resulting MinRank instance with field K.
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To solve the MinRank instance, they suggested constructing a large system of
equations in the following way. Let M1, . . . ,Mk represent the matrices. Compute
the sum X =

∑k
i=1 xiMi and construct the matrix

K =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 0
k1 kr+1 · · · k(n−r−1)r+1

k2 kr+2 · · · k(n−r−1)r+2

...
...

. . .
...

kr k2r · · · k(n−r)r


,

where the xi and ki are variables. They then proposed what they claimed to
be an efficient algorithm for solving such a nonlinear system that they called
relinearization. The efficiency of relinearization seems after more research to
be very poor in comparison to other standard techniques, but this method of
modeling the MinRank instance and its complexity are active areas of research
even today.

The second published MinRank cryptanalysis technique can be called “linear
algebra search” and appeared in [22]. The idea is simple. Suppose the low rank
matrix in the span of the public quadratic forms M1, . . . ,Mm is given by the
sum

∑m
i=1 xiMi. Randomly select a vector w. If we are very lucky, this vector

is in the kernel of the low rank linear combination. Thus we have the matrix
equation

m∑
i=1

xiMiw
> = 0.

If the dimension of w = n is as large as m, then we can solve for the indetermi-
nants xi with linear algebra. Otherwise, we need to select more than one such
vector w at a time. This technique has the benefit of admitting a trivial com-
plexity analysis. Since the target matrix has rank r, its kernel is of dimension
n− r, and so the probability that k = dmn e independent vectors are in the kernel
is q−kr. Taking into consideration the cost of linear algebra, the complexity of
this approach is qkrmω where ω is the linear algebra constant. (This quantity
can be tweaked a bit when m/n is only slightly larger than an integer.)

The third MinRank technique in cryptography literature is the minors mod-
eling technique popularized in [70]. Once again, this method begins with creating
the matrix of linear forms

∑m
i=1 xiMi. The technique exploits the fact that if

there is a matrix in the span of the Mi of rank at most r, then the ideal gen-
erated by the r + 1-dimensional minors of this formal linear combination has
a nonempty ideal over the relevant field. Thus, the MinRank instance can be
attacked via Gröbner basis methods with only m variables (as opposed to the
Kipnis-Shamir methodology which involves m+(n−r)r variables). This method
also has a credible complexity analysis based on the genericity conjecture of [71,
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Conjecture 1], which is related to Fröberg’s Conjecture, see [72]. For the sizes of
most instances of relevance for multivariate cryptography, the complexity seems

to be O
((
m+r
r

)ω)
, where ω is the linear algebra constant.

It should be stated that the Kipnis-Shamir modeling produces a much larger
system than that of minors modeling in terms of the number of variables. In
practice, though, there are many instances in which the Kipnis-Shamir approach
seems faster. We are currently investigating this phenomenon and have some
preliminary results indicating why this is the case. Furthermore, the Kipnis-
Shamir approach lends itself better to some simple optimizations that can be
easily shown to be faster than minors for some schemes. Thus an honest report
must indicate that the complexity of this problem is not solidly understood,
though we appear to be on the threshold of such an understanding.

The second rank attack in our list, the high rank attack, is useful in discov-
ering formulae avoiding a large collection of monomials. This attack is almost
identical to the dual rank attack (which is often also called a high rank attack)
which attempts to find variables occurring in few formulae. Since the target of
the dual rank attack is a special case of the target of a high rank attack, dual
rank attacks are high rank attacks. A high rank attack is not necessarily a dual
rank attack, however. An example of a high rank attack that is of a different
form than the dual rank attacks is the cryptanalysis in [73] of the PMI scheme
of [9]. A much simpler exposition of the attack and an interesting relationship
between certain rank based attacks and some trivial differential invariant attacks
is presented in [74]. This attack also a good example of a statistical technique,
so a more careful exposition will be provided in Subsection 3.4.

The dual rank attack is actually dual to the low rank attack. Whereas the
search version of the low rank attack works by finding a large kernel shared by
a small subspace of the public quadratic forms, the dual attack finds a small
kernel shared by a large subspace of the public forms.

The technique is essentially the reverse of the linear algebra search technique
for low rank attacks. Instead of guessing a kernel variable, solving for a linear
combination of matrices and checking that the rank of that combination is low,
the dual rank attack guesses a linear combination, computes the kernel, and
checks that the subspace of maps sharing the kernel is large. The algorithm is
as follows: 1) Compute a random linear combination M =

∑m
i=1 αiMi; 2) Find

K = ker(M); and 3) Check that the linear system
∑m
i=1 xi(MiK) is of low rank

(equivalently, setting this sum equal to zero, there is a large dimensional solution
space of xis). If the scheme has a collection of variables occurring quadratically
in at most d formulae, then with probability q−d, K is the annihilator of the
complement of that collection. Thus the complexity is something like m3qd for
this attack. This specific method seems to have originated in [22].

Essentially all of these attacks can be used against essentially all of the step-
wise triangular schemes. Which technique is most efficient depends on the pa-
rameters of the scheme. It is important to note that since the central map of
Rainbow contains maps of different rank by design, the low and dual rank at-
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tacks are applicable, though the design parameters are always selected to make
these attacks ineffective.

3.4 Statistical Attacks

Statistical attacks are attacks that gather data by computing some quantity
whose distribution is known to discover a some of the secret structure of the
scheme. Many of the techniques already mentioned can be considered statistical
(for example linear algebra search for MinRank), but some attacks use statistical
means in a different and more intrinsic way. For example, some attacks use
statistics that are less discrete than, say, matrix rank for disambiguation. Still
other attacks gather data differently to infer structure from emergent properties
in the data stream instead of finding a single outlier.

An example of a few statistical techniques using less discrete metrics include
the rank and algebraic attacks using projection of [75]. These methods combine
random projections of the public key of HFEv− with attacks based on Q-rank or
direct algebraic attacks. The attacks attempt to project away from a subspace of
the vinegar variables to reduce the Q-rank of the central map. When this occurs,
the first fall degreee can change, which can be detected. Even more, there are
instances where the time for solving the system changes or matrix size changes
more than expected even at the same first fall degreee. These methods form the
basis of a distinguisher using algebraic techniques. While the main focus of these
attacks is in some form a type of rank attack, the way the data are handled and
interpreted are fundamentally different.

An example of an attack infering structure in an emergent way from a data
stream is the cryptanalysis of the PMI scheme of [9] presented in [73]. A simpler
explanation is provided in [74] which we reiterate here.

The internally perturbed C∗ scheme, PMI, see [9], uses the idea of adding
a random summand of low dimensional support to the core map. Given the
standard parameters of C∗, internal perturbation augments the central map,
f , with a summand g ◦ L, where g : Flq → K is a random quadratic map and

L : K→ Flq is a random Fq-linear map. Thus the entire encryption map is given
by:

P(x) = T ◦ φ−1 ◦ f ◦ φ ◦ U(x) + T ◦ φ−1 ◦ g ◦ L ◦ φ ◦ U(x).

Specifically, the map y = P(x) can be “inverted” by computing all possible
outputs, z, of the random quadratic, g, subtracting T ◦ φ−1(z) from P(x), and
applying the decryption routine of C∗ to the result. If the output, x, of this
procedure matches a preimage of z under g ◦ L ◦ U , then P(x) = y and x is
legitimately an inverse of y. If none of the ql values of z share such a preimage
with the C∗ portion of the map, then y is not in the image of P.

With a change of basis we can express L as L̃ with matrix form:

L̃ =

[
0 0
0 I

]
.
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We then have:

P(x) = T̃ ◦ φ−1 ◦ f̃ ◦ φ ◦ Ũ(x) + T̃ ◦ φ−1 ◦ g̃ ◦ φ ◦ L̃ ◦ Ũ(x),

and in this basis the differential of each formula in the central map has the form:

Df̃i +D(g̃iL̃)i =

[
Df̃ i1 Df̃ i2

Df̃
>
i2 Dg̃i + Df̃ i3

]
.

One may note that for n odd, without the g component, each differen-
tial coordinate form has corank 1. If g is truly randomly selected, then often
when L(φ(U(x))) is nonzero, the rank of the differential coordinate form will be
smaller. An equivalent observation resulted in an attack discovering the “noise
kernel,” effectively removing the perturbation, see [73].

3.5 Quantum Attacks and Speedups

The main known impact of quantum algorithms on multivariate cryptanalysis
is the Grover quadratic speedup, see [76] in different guises. There are several
attacks that perform a memoryless search such as the linear algebra search tech-
nique for solving MinRank that seem to be able to utilize the full power of
the quadratic speedup. Others, such as the hybrid algebraic attacks which pref-
ace a long and memory intensive calculation with a search seem less likely to be
impacted; however, we still cautiously include the quadratic speedup in our anal-
yses. Finally, there is at least one recent advance that seems to be a legitimate
technique to be considered.

This result is the recent article outlining a quantum implementation of the
FXL algorithm and its analysis, see [77]. The analysis shows that the quantum
FXL algorithm beats Grover search on generic systems over F2. The complexity is
approximately 20.45n, which has practical implications. In particular, any scheme
that was agressively setting parameters to thwart Grover search must, in fact,
use keys that are 11% larger.

4 NIST PQC Round 1 Candidates

In this section we present each of the multivariate signature submissions to the
NIST Post-Quantum Standardization Project. In each subsection, we begin by
providing the original proposal of each scheme in the literature, if it is previously
published, classify the scheme relative to the characterizations presented in Sec-
tion 2, describe the primitive with the parameters provided in the proposal and
present any transformations used to achieve security properties.

4.1 Gui

The Gui multivariate signature scheme was first proposed at Asiacrypt 2015
in [78]. Gui is a “big-field” scheme in the HFEv− family of digital signature
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schemes. The parameters for Gui have been chosen after a great many discov-
eries impacting the feasibility and complexity of attacking such schemes via
differential, algebraic or statistical methods, see [14, 79–81, 75]. Thus, there is a
giant performance improvement between the parameters of the HFEv− scheme
QUARTZ, see [8], the odd characteristic parameters first provided with Gui in
[78] and the final form of Gui in the submission, see [82].

Let F = Fq be a finite field with q elements and let E be a degree n extension
of F. Let φ : Fn → E be an F-vector space isomorphism. Let D be the degree
bound of the HFE polynomial and let r = dlogq(D)e. Let a be the corank of the
minus modifier and let v be the number of vinegar variables added by the vinegar
modifier. Let k be the repetition factor in the Feistel-Patarin construction, see
[83]. This method of k linked inversions of the primitive avoids Patarin’s attack
described in his l’habilitation à diriger des recherches, see [84]. Let S : Fn → Fn−a
be a random full rank affine projection and let T : Fn+v → Fn+v be an invertible
affine transformation.

The central map of Gui is F : E× Fv → E defined by

F(X,y) =

qi+qj≤D∑
0≤i≤j

αi,jX
qi+qj +

qi≤D∑
0≤i

βi(y) ·Xqi + γ(y),

where αi,j ∈ E, βi : Fv → E are affine and γ : Fv → E is quadratic. The public
key is then given by

P = S ◦ φ−1 ◦ F ◦ (φ⊗ idv) ◦ T .

From these formulae, we can derive the public and private key sizes. Their for-
mulae in terms of bits are

(n− a)(n+ 1) + (n+ v)(n+ v + 1) + n

[(
r + 1

2

)
+ r(v + 1) +

(
v + 2

2

)]
,

and

(n− a)
(n+ v + 1)(n+ v + 2)

2
,

respectively. The sizes of the keys are provided for the proposed parameter sets
in Figure 5.
Signature Generation: To generate a signature on a document represented
by d, one computes

h = H(d)‖H2(d)‖ · · · ‖H`(d)

of sufficient length to encode k vectors di for 1 ≤ i ≤ k in Fn−a. We then apply
Algorithm 1
Signature Verification: To verify a signature for document d, one first com-
putes the formated hash values di as above. Then we apply Algorithm 2.

In this form, Gui provides universal unforgeability. The submitters trans-
form Gui into an EUF-CMA (Existential Unforgeability under Chosen Message
Attack) scheme by using the transformation in [85]. Specifically, instead of sign-
ing the document d, a signer chooses a random 128-bit “salt” r, computes a
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Parameter Set q n r v a k

Gui-184 2 184 6 16 16 2

Gui-312 2 312 8 24 20 2

Gui-448 2 448 10 32 28 2

Private Key Size Public Key Size Signature Size (w/ salt)

Gui-184 19.1kB 416.3kB 360b

Gui-312 59.3kB 1955.1kB 504b

Gui-448 155.9kB 5789.2kB 664b

Fig. 5. The parameters of the Gui submissions and their private and public key sizes.

Algorithm 1 GuiSign

Input: S,F , T , φ, k and di for 1 ≤ i ≤ k.
Output: Gui signature σ ∈ F(n−a)+k(a+v).

1: S0 ← 0
2: for all i from 1 to k do
3: s← di ⊕ Si−1

4: x
$←− {x : S(x) = s}

5: X ← φ(x)
6: repeat

7: y
$←− Fv

8: U ← Cantor-Zassenhaus-Root(F(·,y) = X)
9: until C-Z-Root is unique

10: u← φ−1(U)‖y
11: z← T −1(u)
12: Si‖Xi ← z, where Xi ∈ Fn−a and Xi ∈ Fa+v

13: end for
14: return σ = Sk‖Xk‖ · · · ‖X1

signature in the above manner for the message H(d)‖r, and appends r to the
signature. Upon verification, r is recovered by parsing the signature, and the
verifier verifies the message H(d)‖r.

The description in [82] of the signing algorithm indicates the important step
of the Cantor-Zassenhaus algorithm performed. This operation is a polynomial
GCD calculation involving a polynomial of degree qn, namely Y q

n−Y . Since this
step may be confusing for the ready, later in the document the authors explain
the standard trick for this calculation, which is to compute repeated Frobenius
powers on Y q

i

modulo the low degree HFE polynomial. Thus the complexity is
something like O (nD).

A more serious issue is that the signing algorithm is not time constant. The
authors acknowledge that the Cantor-Zassenhaus step, see [86], will only output
an unique solution with probability approximately e−1. Thus, for a full signature,
there are roughly ek calls to Cantor-Zassenhaus. Thus, there are likely some side-
channel techniques to detect when solutions were not unique. The authors argue
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Algorithm 2 GuiVerify

Input: P, σ = Sk‖Xk‖ · · · ‖X1 and di for 1 ≤ i ≤ k.
Output: boolean b with value TRUE if signature accepted.

1: for all i from k to 1 do
2: w← P(Si‖Xi)
3: Si−1 ← w ⊕ di

4: end for
5: if S0 = 0 then
6: return true
7: else
8: return false
9: end if

that there are no known attacks for “big-field” schemes using the fact that an
equation in the extension field does not have an unique solution.

Another issue with Gui is that the original submission did not adhere to the
rules stated in the call for proposals. The submitters’ implementation included
the use of the PCLMULQDQ carry-less multiplication instruction set stating
that most new Intel and AMD processors use this instruction set. There should
be a significant performance difference when using this instruction set versus
the platform independent version required by the NIST Submission Require-
ments and Evaluation Criteria for the Post-Quantum Cryptograpy Standardiza-
tion Process, see [87].

4.2 GeMSS

The GeMSS multivariate digital signature scheme submission can be found in
[88]. GeMSS, as is Gui, is a “big-field” scheme in the HFEv− family. The GeMSS
submission is very similar to that of Gui (and probably should have appeared
before Gui in this manuscript, but the author began work on Gui first). The
notation is slightly different, but the details of the implementation are very
similar; consequently, we highlight the differences between the schemes.

The first difference in the schemes is the repetition factor in the Feistel-
Patarin construction. While the original proposal for Gui suggests using k = 2
repetitions, GeMSS more conservatively suggests using k = 4 repetitions. This
difference means that for similar parameters, GeMMS should be only 50% as
fast (or perhaps more accurately, twice as slow) as Gui.

Another significant difference is that the inversion of the HFE polynomial in
GeMSS uses the Berlekamp Algorithm, see [6], in place of Cantor-Zassenhaus,
see [86]. Still, the expected complexity is about the same.

The final significant difference between GeMMS and Gui is also in relation
to the Feistel-Patarin construction. The constrution requires the selection of a
random “salt” of some specified length `. In Gui, guidance was given in the
selection of `. Specifically, they suggest that a static value of ` = 128 is used.
GeMMS appears to provide no guidance in the selection of this value; thus, a
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Parameter Set q n r v a k

GeMSS128 2 174 10 12 12 4

GeMSS192 2 265 10 20 22 4

GeMSS256 2 354 10 33 30 4

Private Key Size Public Key Size Signature Size (w/ salt)

GeMSS128 13.9kB 407.6kB 384b

GeMSS192 38.5kB 1273.6kB 704b

GeMSS256 80.1kB 3519.3kB 832b

Fig. 6. The parameters of the GeMSS submissions and their private and public key
sizes.

user is free to chose ` = 0, which undermines the EUF-CMA proof. (In spite
of this apparent oversight, the attention to detail of the GeMSS submission
makes it seem more like the beginnings of a standards document than the Gui
submission.)

The suggested parameters for standardization are provided in Figure 6.

4.3 HiMQ-3

HiMQ-3, standing for “High speed Multivariate Quadratic system with 3 lay-
ers,” see [89], is a “small-field” scheme similar to Rainbow that uses specially
structured layers to achieve a speed up over traditional Rainbow. The scheme
first appeared at ASIACRYPT 2017 in [90]. The scheme utilizes a three layer
Rainbow-like design with some components of the polynomial system of a special
form that is efficiently solvable.

First, the submitters present the following lemma:

Lemma 1 Let F be a finite field of characteristic 2 and let ` be an odd positive
integer. Let Qi(x) = αixixi+1 − βi is 1 ≤ i < ` and let Q`(x) = α`x`x1 − β`,
where αi, βi ∈ F∗. Let A =

∏`
i=1 α

−1
i βi, B =

∏(`−1)/2
i=1 α−1i βi. Then Q has an

unique root (x1, . . . , x`) given by

xi =


√
A/B, if i = 1

α−1i−1βi−1x
−1
i−1, if 1 < i < `

α−1i βix
−1
1 , if i = `.

Lemma 1 is used for efficient inversion of two layers while Gaussian elimination is
used to solve the last layer. The structure of the central maps is best illustrated
by the visualization in Figure 7

The design seems to be inspired by Rainbow with a more efficient inversion
in some layers. The submitters utilize a trick similar to the `IC scheme, see [55],
to streamline inversion while maintaining rank properties similar to an instance
of Rainbow with the same parameters. To use this trick they require that the
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Fig. 7. The rough shape of the matrix representations of the discrete differential of
each central map of HiMQ-3. The shaded regions represent possibly nonzero values
while unshaded areas have coefficients of zero. (This diagram uses v = o1 = o2 = o3
which is not a valid set of parameters for HiMQ-3, but makes the drawing simpler. For
actual parameters, it is required that v > o1.)

coefficients of the central map are non-zero as well as any valid input to the
central map.

The submitters propose three versions of HiMQ-3 including a couple of vari-
ants of the idea. The first modification, called HiMQ-3F replaces the quadratic
structure of the vinegar variables in the first layer with a random structure, and
does the same to the monomials mixing the vinegar variables and first layer of
oil variables in the second layer maps. The second modification is to generate
the private key with a pseudo-random generator(PRG) to save storage space.
The key specifications for each parameter set are listed in Figure 8.

4.4 LUOV

The LUOV submission, see [91], is a variant of the UOV scheme of [51]. The
scheme incorporates several improvements on UOV, some of which have been
around for years and some of which are new.

The first improvement LUOV offers over UOV is a key size reduction derived
by requiring the coefficients of a map from a vector space Fnq to Fmq with a power
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Parameter Set q v o1 o2 o3
HiMQ-3 256 31 15 15 14

HiMQ-3F 256 24 11 17 15

HiMQ-3P 256 31 15 15 14

Private Key Size Public Key Size Signature Size

HiMQ-3 12074B 128744B 75B

HiMQ-3F 14878B 100878B 67B

HiMQ-3P 32B 128744B 75B

Fig. 8. The parameters of the HiMQ-3 submissions and their private and public key
and signature sizes.

of 2 all lie in F2 ( Fq, an idea first proposed in [92]. Defining UOV over F2 itself
does not seem optimal because solving generic systems is slightly more efficient
over F2 than over larger fields. This modification allows an adversary to consider
the public key as a map from Fn2 to Fm2 , though hash-and-sign seems to avoid
these attacks in principal.

Another significant difference between LUOV and UOV is that LUOV uses
the observation in [93] that many coefficients of the public key can be arbitrarily
selected and a corresponding private key be derived to achieve a further key size
reduction. While in [93], the authors suggest using a cyclic construction, LUOV
simply publishes a seed for a PRG as part of the key.

Additional modifications include the introduction of a message recovery mode,
an independent way of recovering some bytes of the message from the verifica-
tion process, and the demonstration of a trade off between public key size and
signature size. Thus, LUOV offers very malleable keys that can be tweaked for
different performance and security properties.

The submitters provide six parameter sets, see Figure 9. Three of these pro-
posals are for short signatures with larger keys and three are for longer signatures
with shorter keys.

Private Key Size Public Key Size Signature Size

LUOV-8-63-256 32B 15.5kB 319B
LUOV-8-90-351 32B 45.0kB 441B
LUOV-8-117-404 32B 98.6kB 521B

LUOV-48-49-242 32B 7.3kB 1.7kB
LUOV-64-68-330 32B 19.5kB 3.1kB
LUOV-80-86-399 32B 39.3kB 4.7kB

Fig. 9. The parameters of the LUOV submissions and their private and public key and
signature sizes. The naming convention is LUOV-log2(q)-o-v.
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4.5 Rainbow

In [94], the Rainbow signature scheme is presented. Rainbow is one of the oldest
and most studied “small-field” schemes, first appearing in [?]. In the lineage
of UOV, Rainbow offers a potential peformance improvement due to smaller
matrix inversion steps. Rainbow also offers a great deal of malleability with
possible trade offs between key size and speed.

A detailed description of the Rainbow primitive is provided in Section 2.2.
As described there, the scheme only achieves universal unforgeability. To achieve
EUF-CMA security, the submitters recommend a transformation similar to the
transformation in [85]. As in the case of Gui and GeMSS, this transform essen-
tially replaces signing H(d) with signing H(H(d)‖r) for a random “salt” r.

Generically, given u layers with parameters o1, . . . , ou, v1, . . . , vu,m equations
and n variables, the size of the private key is

m(m+ 1) + n(n+ 1) +

u∑
i=1

(
vi(vi + 1)

2
+ vioi + vi + oi + 1

)
elements of Fq. Meanwhile, the corresponding public key consists of

m
(n+ 1)(n+ 1)

2

elements of Fq.
The submission includes 9 parameter sets some of which are designed over

odd characteristic fields as was promoted in [95] and some of which are over fields
of characteristic 2 for efficiency. The Parameters are presented in Figure 10 while
key sizes and signature sizes are offered in Figure 11.

Parameter Set q v1 o1 o2 n m

RainbowIa 16 32 32 32 96 64
RainbowIb 256 36 28 28 92 56
RainbowIc 256 40 24 24 88 48

RainbowIIIb 256 64 32 48 144 80
RainbowIIIc 256 68 36 36 140 72

RainbowIVa 256 56 48 48 152 96

RainbowVc 256 92 48 48 188 96

RainbowVIa 256 76 64 64 204 128
RainbowVIb 256 84 56 56 196 112

Fig. 10. The parameters of the Rainbow submissions.

The original Rainbow submission did not adhere to the rules stated in the
call for proposals. The submitters’ implementation included the use of the AVX2
instruction VPMADDUBSW which computes two 8-bit Single Instruction Mul-
tiple Data (SIMD) multiplications and a 16-bit SIMD addition in one operation.
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There should be a significant performance difference when using this instruction
set versus the platform independent version required by the NIST Submission
Requirements and Evaluation Criteria for the Post-Quantum Cryptograpy Stan-
dardization Process, see [87].

Private Key Size Public Key Size Signature Size

RainbowIa 97.9kB 148.5kB 512b
RainbowIb 103.7kB 148.3kB 624b
RainbowIc 140.0kB 187.7kB 832b

RainbowIIIb 371.4kB 512.1kB 896b
RainbowIIIc 525.2kB 703.9kB 1248b

RainbowIVa 367.3kB 552.2kB 736b

RainbowVc 1244.4kB 1683.3kB 1632b

RainbowVIa 781.2kB 1319.7kB 944b
RainbowVIb 922.4kB 1321kB 1176b

Fig. 11. The private and public key sizes and signature sizes of the Rainbow submis-
sions.

4.6 MQDSS

The MQDSS signature scheme, first published in [96], is based on the 5-pass
multivariate identification scheme of [97] which is provably as hard as the MQ
problem. The submission, see [98], uses a generalization of the Fiat-Shamir Tran-
form for 5-pass identification schemes on the identification scheme of [97].

The 5-pass identification scheme in [97] is based essentially on a zero-knowledge
proof of knowledge of the space RF = {(x,y) : y = F (x)}, where F is a ran-
dom multivariate quadratic system (in the context of MQDSS this polynomial
has all constant coefficients zero). This proof exploits the fact that if F (0) = 0,
then F (a + x) = DF (a + x) + F (a) + F (x) to split knowledge of the equation
y = F (x) into two shares in the following way. First, notice that for any tuple
(r0, r1, t0, t1, e0, e1) the system

DF (t0, r1) + e0 = y − F (r1)−DF (t1, r1)− e1

t0 = r0 − t1

e0 = F (r0)− e1

is satisfied if and only if y = F (r0 +r1). So the prover chooses randomly r0, t0 ∈
Fnq and e0 ∈ Fmq and sets r1 = x−r0, t1 = r0−t0 and e1 = F (r0)−e0, generating
such a tuple from which the verifier can query a coordinate while receiving no
knowledge of x.

The scheme uses three pseudo-random generators (PRGs): PRGsk, used to
generate three pseudo-random seeds; PRGs, used to generate a pseudo-random
input for an MQ instance; and PRGrte, a pseudo-random generator used dur-
ing signing. The scheme also employs three cryptographic hash functions, H,
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H1 and H2, and two string commitment functions, Com0 and Com1. The secret
key is simply a random seed for PRGsk. The public key consists of the pseudo-
random seed for an extendable output MQ encoder and the output of the re-
sultant multivariate system on the pseudo-random input generated by PRGs.
Specifically, for security parameter k, we randomly choose sk ∈ {0, 1}k, parse
(SF , Ss, Srte) = PRGsk(sk), generate the multivariate system F = XOFF (SF )
with differential G(a,x) = DF (a,x) (as specified, F has no constant coefficients,
thus F (0) = 0), compute s = PRGs(Ss), evaluate v = F (s) and form the public
key pk = (SF , v). Thus, both the public key and private key are relatively small,
see Figure 12.

Parameter Set k q n r Private Key Size Public Key Size Signature Size

MQDSS-31-48 256 31 48 269 62B 32B 32882B

MQDSS-31-64 384 31 64 403 88B 48B 67800B

Fig. 12. Parameters and key sizes for MQDSS submissions.

To sign, one applies Algorithm 3 to obtain a signature which is essentially the
concatenation of the hash of the concatenation of the secret key and message,
a list of commitment shares, responses and a hash of the concatenation of all
commitments. Verification is accomplished by shadowing the calculation, using
the hash of the secret key and message to reconstruct the commitments. The
details are found in Algorithm 4.

5 Security Analyses in Supporting Documentation

Of the submissions, two are “big-field” HFEv− schemes that are fairly similar,
two are different approaches to the Rainbow construction, one is a new modifier
for UOV, and one used a modified Fiat-Shamir transform on a provably hard
identification scheme that embeds a transcript of a zero-knowledge proof in the
signature. The security analyses of the HFEv−-like schemes and those of the
Rainbow-like schemes are similar, and the teams present the analysis in vary-
ing levels of detail. We describe the security results reported in the supporting
documentation with the schemes grouped into their categories.

5.1 HFEv− Schemes

Both the Gui submission, see [82], and the GeMSS submission, see [88], acknowl-
edge that there is no reduction theoretic proof of security available for HFEv−

schemes. They both note, however, that HFEv− schemes are some of the oldest
and best studied multivariate post-quantum cryptosystems, comparable in age
to NTRU, see [99].

The teams discuss the resistance of HFEv− schemes to exhaustive search, the
direct algebraic attack, to MinRank attacks, and the new distinguishing attack
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Algorithm 3 MQDSSSign

Input: sk, M
Output: Signature σ

1: SF , Ss, Srte ← PRGsk(sk)
2: F ← XOFF (SF )
3: s← PRGs(Ss)
4: pk ← (SF , F (s))
5: R← H(sk‖M)
6: D ← H(pk‖R‖M)

7: r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0 ← PRGrte(Srte, D)

8: for all j from 1 to r do
9: r

(j)
1 ← s− r(j)0

10: c
(j)
0 ← Com0(rj0, t

(j)
0 , e

(j)
0 )

11: c
(j)
1 ← Com1(r

(j)
1 , G(t

(j)
0 , r

(j)
1 ) + e

(j)
0

12: com(j) ← (c
(j)
0 , c

(j)
1 )

13: end for
14: σ0 ← H(com(1)‖com(2)‖ . . . ‖com(r))
15: ch1 ← H1(D,σ0)
16: Parse ch1 as ch1 = (α(1), . . . , α(r) ∈ Fr

q

17: for all j from 1 to r do
18: t

(j)
q ← α(j)r

(j)
0 − t

(j)
0

19: e
(j)
1 ← α(j)F (r

(j)
0 )− e(j)0

20: resp
(j)
q ← (t

(j)
1 , e

(j)
1 )

21: end for
22: σ1 ← (resp

(1)
1 ‖resp

(2)
1 ‖ . . . ‖resp

(r)
1 )

23: ch2 ← H2(D,σ0, ch1, σ1)
24: Parse ch2 as ch2 = (b(1), . . . , b(r)) ∈ Fr

q

25: for all j from 1 to r do
26: resp

(j)
2 ← r

(j)

b(j)

27: end for
28: σ2 ← (resp

(1)
2 ‖ . . . ‖resp

(r)
2 ‖c

(1)

1−b(1)
‖ . . . ‖c(r)

1−b(r)
)

29: return σ = (R, σ0, σ1, σ2)

Algorithm 4 MQDSSVerify

Input: pk, σ, M
Output: boolean b with value TRUE if signature accepted.

1: F ← XOFF (SF )
2: D ← H(pk‖R‖M) assuming σ parsed as (R, σ0, σ1, σ2)
3: ch1 ← H1(D,σ0)
4: Parse ch1 as ch1 = (α(1), . . . , α(r) ∈ Fr

q

5: ch2 ← H2(D,σ0, ch1, σ1)
6: Parse ch2 as ch2 = (b(1), . . . , b(r)) ∈ Fr

q

7: Parse σ0 as (resp
(1)
1 ‖resp

(2)
1 ‖ . . . ‖resp

(r)
1 )

8: Parse σ2 as (resp
(1)
2 ‖ . . . ‖resp

(r)
2 ‖c

(1)

1−b(1)
‖ . . . ‖c(r)

1−b(r)
)

9: for all j from 1 to r do
10: Parse resp

(j)
q as (t

(j)
1 , e

(j)
1 )

11: if b(j) = 0 then
12: r

(j)
0 ← resp

(j)
2

13: c
(j)
0 ← Com0(rj0, α

(j)r
(j)
0 − t

(j)
1 , α(j)F (r

(j)
0 − e

(j)
1 )

14: else
15: r

(j)
1 ← resp

(j)
2

16: c
(j)
1 ← Com1(r

(j)
1 , α(j)(v − F (r

(j)
1 ))−G(t

(j)
1 , r

(j)
1 )− e(j)1

17: end if
18: com(j) ← (c

(j)
0 , c

(j)
1 )

19: end for
20: σ′0 ← H(com(1)‖ . . . ‖com(r))
21: return (σ′0 = σ0)
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in [75]. In addition, both teams note the known quantum speedups for these
algorithms. In particular, it is noted that there is no known quantum speedup
for the rank attacks and appears to only be potential for a quantum speedup of
direct attacks with the hybrid methodology.

First, we consider an exhaustive search message recovery attack. The fastest
known method for a quantum adversary for inverting a quadratic system over
F2 is Quantum FXL, see [77]. The complexity for HFEv− parameters is

O
(

20.45(n−a)
)
.

If we cautiously assume we can apply the same technique in general, we can
replace the 2 in the above formula with q. (In particular, we can make this
exchange anyway in characteristic 2.)

We next consider the direct algebraic attack, a message recovery attack based
on algebraic techniques for solving a system of nonlinear equations typically by
way of a Gröbner basis calculation. There has been a great deal of work in the
literature on deriving the degree of regularity of schemes related to HFE. A
progression of results deriving upper bounds on the degree of regularity, first by
assuming the system to be semi-regular and subsequently by using the special
structure of HFE, can be found in [100, 79, 101, 80, 81]. Empirical evidence of
the lower bound trendline for the degree of regularity of HFEv− schemes can be
found in [102]. Both teams assert that the culmination of these works seems to
provide the generic complexity of the algebraic approach. The empirical lower
bound provides a complexity against direct attacks of

O
((

n− a
d r+a+v+7

3 e

)ω)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant. Considering that both schemes
use a Feistel-Patarin construction with a repetition factor, it is not clear how
to implement a hybrid attack with a guessing component to exploit a quantum
speedup from Grover’s algorithm.

We also consider the MinRank attack, that breaks HFE, see [70], and weak
parameters of HFE−, see [15]. This attack exploits the property imposed by the
degree bound of HFE maps that they have a low Q-rank, that is, a low rank
as a quadratic form on a K-algebra A. This attack, first proposed in [39], was
updated in [70] to a var more efficient attack. The low rank property can be
encoded in a system of equations over F, a Gröbner basis computed over F, and
the variety computed over K to recover a low rank representation of the central
map as a quadratic form on A. While minors modeling currently has the tightest
complexity analysis, Kipnis Shamir modeling seems experimentally to be slightly
better for these schemes. Both teams report the complexity to be

O
(
nω(r+v+a+1)

)
.

While the Gui team use a value of ω = 2.3 for setting parameters, the GeMSS
team choose ω = 2. For the size of schemes presented, it seems that both choices
of ω are conservative, especially the GeMSS selection.
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Differential attacks have also been a concern for schemes in the lineage of
C∗. The teams both cite the result in [14] proving HFEv− schemes immune to
differential cryptanalysis.

Finally, both teams acknowledge the recent statistical approach of [75] com-
bining random projections with MinRank and hybrid algebraic attacks on the
primitive. For all of the parameter sets, the strongest of these statistical tech-
niques is the hybrid algebraic distinguishing attack. The complexity is given
by

O
(

2(n−k)/2
(
n+ v − k
dreg

)ω)
,

for the quantum adversary.
Since the two schemes are very similar with a similar methodology in the

selection of parameters, they achieve similar security properties with respect to
known attack methods. A summary of these results is in Figure 13.

Parameter Set Exhaustive Search Direct Algebraic MinRank Distinguishing

Gui-184 108 157 324 191
Gui-312 171 222 481 280
Gui-448 236 293 665 382

GeMSS128 105 131 513∗ ?
GeMSS192 147 193 824∗ ?
GeMSS256 189 261 1218∗ ?

Fig. 13. The log2 of the Complexity of known attacks quantum or classical on HFEv−

submissions. hidden message hidden messages hidden messages hidden messages hidden
∗ - derived from a weak asymptotic approximation. hidden messages - hidden messages-
? - not available in submission.

5.2 Rainbow-like Schemes

The submissions HiMQ-3, LUOV, and Rainbow can all be classified as Rainbow
schemes with different parameters and possibly extra structure. They can all
be attacked by rank methods, and algebraic attacks. HiMQ-3 and LUOV have
additional structure that given them extra properties.

In applying the direct algebraic attack, the adversary is free to arbitrarily
assign values to enough variables to achieve a fully determined system reducing
the number of variables to equal the number of equations. In addition to this, the
adversary can employ the hybrid approach in which a few more values of vari-
ables are assigned at random. If the guess is correct, then the system is slightly
overdetermined and may result in the degree of regularity lowering, so that the
resolution is faster. A quantum implementation of this hybrid approach allows
the search to be sped up by Grover’s algorithm, resulting in further improvement.

While Rainbow has been studied for years in the context of algebraic attacks,
see [103], for example, both HiMQ-3 and LUOV are relatively new and this area is
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less explored. The HiMQ-3 addresses this issue by running experiments showing
that the systems appear to be semi-regular as is optimal. The LUOV team notes
that only a portion of the publically computable coefficients of the public map lie
in F2 while the rest lie in F8. Thus, direct attacks must solve over the larger field.
They further state that the work in [104] suggests that the systems arising from
UOV by assigning values to v variables (as is performed in the fastest attacks)
appear semi-regular. The team concludes that the direct algebraic attack is of
the same complexity as an instance of UOV with similar parameters.

The low rank attack has a complexity determined by the ratio of equations
to variables, and since these schemes are underdefined, the complexity of the
linear algebra search version of this attack is qrmω, where r is equal to the
number of oil variables in the first layer and m is equal to the total number of oil
variables. In the case of LUOV, these two quantities are equal and smaller than
v, so we do not expect to find low rank maps in the span of the public quadratic
forms. In the case of HiMQ-3, the central maps have very few monomials, but
are required to have full rank. For both HiMQ-3 and Rainbow the complexity of
linear algebra search is O

(
(v + o1 + o2)ωq(v+1)/2

)
for a quantum adversary due

to the interlinked kernels, see [105].
The high rank attack and Rainbow Band Separation(RBS) attack are also

applicable to both Rainbow and HiMQ-3. The attack find the span of the last
oil layer which consists of the variables occuring the least times in quadratic
terms in the central map. LUOV is immune to the high rank attack; the RBS
attack can in principle be used to attack LUOV. The complexity for a quantum
adversary for this attack is O

(
(v + o1 + o2)ωqo2/2

)
.

A summary of the security analysis for these scheme is presented in Figure 14.
We focus on some of the parameters instead of every iteration for convenience.

Parameter Set Exhaustive Search Direct Algebraic MinRank HighRank RBS

HiMQ-3 154 129 131 135 ?

RainbowIa 115 147 95 86 145

LUOV-8-63-256 226 161 UOV→ 161 192

Fig. 14. The log2 of the Complexity of known attacks quantum or classical on
Rainbow-like submissions. hidden message hidden messages hidden messages hidden
? - not available in submission.

5.3 MQDSS

MQDSS differs from the other submissions in that it comes with a provable
reduction to MQ. There are some issues to consider still.

First, the parameters selected do not satisfy the requirements of the secu-
rity proof. In particular, in [98, Section 11.1], the submitters state that, “our
security reduction in the ROM is very loose, we found it impractical to use con-
crete expressions from the reduction in our choice of parameters. Instead, the
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parameters are based on the best known attacks agains the MQ problem and
against SHAKE256.” Furthermore, there may be problems with the extension of
the result in the QROM model. The submitters themselves note this in Section
14 of the submission.

The parameters of MQDSS-31-48 provide 99 bits of security against quan-
tum exhaustive search and 159 bits of security against classical Gröbner basis
algorithms.

6 Performance Comparison

We summarize the performance of the smallest version of each scheme in terms
of key size in Figure 16 and in terms of speed in Figure ??.

Parameter Set Private Key Size Public Key Size Signature Size

Gui-184 19.1kB 416.3kB 360b
GeMSS128 13.9kB 407.6kB 384b

HiMQ-3 11.8kB 125.7kB 75B
RainbowIa 97.9kB 148.5kB 64B

LUOV-8-63-256 32B 15.5kB 319B

MQDSS-31-48 62B 32B 32.1kB

Fig. 15. A comparison of key and signature sizes among the multivariate candidates.

Parameter Set KeyGen Sign Verify

Gui-184 2408M 1910M 152k
GeMSS128 44ms 323ms 41µs

HiMQ-3 50.6M 21.6k 18.0k
RainbowIa 1302M 601k 350k

LUOV-8-63-256 21M 5.9M 4.9M

MQDSS-31-48 1.2M 52.5M 38.7M

Fig. 16. A comparison of cycles among the multivariate candidates. Not available for
GeMSS

7 Recent Work and Comments

In this section we present the current official comments on the multivariate
submissions.



   

                         

                               
             
                             

     

   
 

             

    

                                     
            

                             
                             

                               
                           

                               
                  

                           
                               

                           
                    

                                 
                                   

                               
                        

                                           
                                     
                        

                                       
                

    
  

From: Ward Beullens <ward.beullens@student.kuleuven.be> 
Sent: Monday, April 30, 2018 6:41 AM 
To: pqc-forum@list.nist.gov 
Subject: Re: [pqc-forum] OFFICIAL COMMENT: Gui 

Dear all, 

In my previous email I forgot to include the references, here they are: 

[1] Nicolas Courtois. Generic attacks and the security of quartz. In Public Key Cryptography, volume 2567 of Lecture 
Notes in Computer Science, pages 351–364. Springer, 2003. 
[2] Van Oorschot, Paul C., and Michael J. Wiener. "Parallel collision search with cryptanalytic applications." Journal of 
cryptology 12.1 (1999): 1‐28. 

My apologies, 
Ward 

On 04/27/2018 04:11 PM, Ward Beullens wrote: 

Dear all, 

I believe there is a problem with the parameters of the Gui signature scheme for security level 1, and 
that a parameter change is needed. 

The scheme uses a HFEv‐ trapdoor function which, with the proposed parameters for security level 1, 
outputs 168 bits. Given the limited number of output bits, this trapdoor cannot be straightforwardly 
used in a hash‐and‐sign scheme, because a collision attack would be able to forge signatures with 
roughly 2^{168/2} = 2^84 evaluations of the trapdoor function. Instead, Gui uses the Feistel‐Patarin 
construction [1], which requires k inversions of the trapdoor function to sign a message and k 
evaluations of the trapdoor function to verify a signature. 

The paper [1] describes a generic attack on the Feistel‐Patarin construction with requires roughly 
2^{m*k/k+1} evaluations of the trapdoor function (where m is the number of bits outputted by the 
trapdoor function), and requires roughly m*2^{m*k/k+1} bits of memory. For Gui this means 2^112 
evaluations of the public map, and 112*2^112 bits of memory. 

However, the distinguished point method of [2] can be used to have essentially the time complexity with 
roughly 3*112*2^56 bits of memory (that is less than the amount of data that Google stores). I estimate 
that this attack requires 2^135 (classical) gates, which is significantly less than the estimate of 2^143 
gates for a key‐search on AES in the NIST call for proposals. 

I think the best way to fix the problem is to increase the parameter k from 2 to 3 (the GeMSS submission 
has similar parameters and uses k=4). This would lead to a very modest increase of 32 bits in signature 
size, and a slowdown of the signing and verification algorithm of 50%. 

I want to stress that this is a purely generic attack which only affects the security level 1 parameters, this 
does not indicate a weakness in the HFEv‐ construction. 

Kind regards, 
Ward 

1 
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From: Bo-Yin Yang <moscito@gmail.com>
Sent: Thursday, June 14, 2018 9:33 PM
To: pqc-comments
Cc: pqc-forum@list.nist.gov
Subject: OFFICIAL COMMENT: Gui

Dear Ward and everyone on this list, 

We agree that we made a small mistake in our parameters and will change from k=2 to k=3 in Gui-184 in the future.  This will not 
affect keysizes but will increase the signature by 32 bits as well as the runtime by 1.5x. 

Best wishes 
The Gui designers  



                             
   

 
   

 
 

                                         
                         

 
                   
                         
 

           
 

                                       
                                     
           

 
                       

                         
                                 

       
               

 
                                         
                                 

 
                                     

                                 
               
                       

 
                                         
               

 
                     
                   
 
                       
                           
                         
 

                                 
                 

From: D. J. Bernstein <djb@cr.yp.to>
Sent: Monday, April 30, 2018 3:45 AM
To: pqc-comments
Cc: pqc-forum@list.nist.gov
Subject: OFFICIAL COMMENT: GeMSS
Attachments: signature.asc

I'm writing to correct some misimpressions regarding asymptotic MQ security that are created by the 
GeMSS/DualModeMS presentation: 

https://csrc.nist.gov/CSRC/media/Presentations/DualModeMS-GeMMS/images-media/DualMode-and-GeMMs-
April2018.pdf

Specifically, page 15 of the PDF (slide "10/19") has the following summary of the costs of quantum versions of FXL stated 
in two independent papers for solving m equations in m variables over F_q: 

* "O(2^0.462m)" from a "2017" paper (posted 2017.12.19).
* "When q=2, O(2^0.472m)" from a "PQC 2018" paper (posted 2017.12.15).

There are four specific issues here. 

Issue #1: Because the "When q=2" restriction is stated only for the second number, readers will assume that the first 
number applies to larger fields‐‐‐for example, that switching from F_2 to F_3 for the same m doesn't provide larger 
security at this level of detail. 

That's wrong. The first number 0.46240... is also limited to F_2. For 
F_3 the best exponent known is 0.70425..., below 0.5 lg 3 = 0.79248... 
but above 0.46240..., analogously to the pre‐quantum situation of F_3 having larger exponent than F_2. See the 
2017.12.15 paper for details. 
(The 2017.12.19 paper doesn't consider cases beyond F_2.) 

Issue #2: Readers will assume that the 0.462 and 0.472 are the best exponents obtained in these two papers, and are 
likely to think that this discrepancy shows some instability in the understanding of this class of algorithms. 

But that's also wrong. The two papers obtain the same exponent here. See Table 4.10 in the 2017.12.15 paper, 
"GroverXL operation‐count exponent ... rounded down to multiple of 0.00001", top‐left corner (top being F_2; left being 
the same number of equations as variables), "0.46240". 
This is the same as the "0.462" exponent from the 2017.12.19 paper. 

There's also a "0.47210" in the 2017.12.15 paper, but that's in a different metric, so it's wrong to juxtapose the numbers 
without mentioning that the metrics are different. Specifically: 

* Exponent 0.46240...+o(1) is in a simplified operation‐count metric.
This metric is considered in both papers.

* Exponent 0.47210...+o(1) is in a realistic area‐time metric. This
metric is analyzed only in the 2017.12.15 paper, and this exponent
isn't achieved by the algorithm outlined in the 2017.12.19 paper.

The gap here occurs for the same reasons as the long‐established gap between analogous metrics for pre‐quantum 
integer factorization: linear algebra uses a lot of communication. 

1 



 
                                         

                                           
         

                     
 

                                           
                                       
       

 
                                           
                               

                                   
                         

 
 

 
                                                 
                             

                                   
                                 
                                   

                     

Issue #3: The "0.462" and the "0.472" are the results of rounding the actual exponents down. This needs to be stated 
explicitly, for example with dots. The issue here isn't that this is a big quantitative gap; the issue is that careful readers 
comparing, e.g., "0.462" to "0.46240..." 
are again being told that there's a discrepancy, which isn't true. 

Issue #4: A o(1) in the exponent has disappeared in favor of an O() outside the formula. This isn't justified by either 
paper. This _could_ be a big quantitative gap compared to any reasonable O constant‐‐‐one would have to do a more 
detailed analysis to tell. 

Of course rounding _up_ can avoid the overt error: if the time is at most 2^((0.462...+o(1))m) then it's true that the time 
is at most, say, O(2^(0.463m)). However, careful readers comparing two of these slight asymptotic overestimates are 
again led to believe that there's a discrepancy when there actually isn't (unless the slight overestimates happen to 
coincide). Furthermore, the o(1) is useful as an alert regarding suppressed subexponential factors. 

‐‐‐Dan 

P.S. I'm a coauthor of the 2017.12.15 paper and gave a talk on the paper at PQCrypto 2018. I was careful in the talk to 
point out the subset that was done independently (obtaining the same 0.46240... exponent) in the 
2017.12.19 paper. I'm puzzled that the authors of the 2017.12.19 paper, overlapping the authors of these slides, have 
chosen to juxtapose 0.472 from "2018" with 0.462 from "2017" without mentioning that the metrics are different, 
without mentioning that the "2018" paper also obtained the 0.462 result for the smaller metric, and without mentioning 
that the "2018" paper was posted before the "2017" paper was. 
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From: perret <ludovic.perret@lip6.fr> 
Sent: Tuesday, May 08, 2018 6:57 AM 
To: pqc-comments; pqc-forum@list.nist.gov 
Subject: Re: [pqc-forum] OFFICIAL COMMENT: GeMSS 

Dear Mailing list, 

We have 20 minutes to present GeMSS and DualModeMS. Contrarily to the PQC’18 presentation on: 
Daniel J. Bernstein and Bo‐Yin Yang: ``Asymptotically faster quantum algorithms to solve multivariate quadratic 
equations’’, the goal of the GeMSS/DualModeMS talk was not to have an in‐depth discussion about recent results on 
the asymptotic hardness of MQ in the quantum setting. We tried to give a global idea on the features of GeMSS & 
DualModeMS and explain our strategy to derive the parameters. 

The purpose of the slide that is pointed by D. Bernstein was too explain the strategy for evaluating the security of 
GeMSS/DualModeMS in the quantum setting. In particular, we wanted to emphasize that we already used O(2^0.462m) 
in the reference documentation of GeMSS/DualModeMS presentation. For the record, we copy‐paste below the related 
paragraph in the GeMMS documentation submitted to NIST (deadline was end of November 2017). 
`` 
QuantumBooleanSolve. In a recent paper [35], the authors present a quantum version of BooleanSolve that takes 
advantages of Grover’s quantum algorithm [44]. QuantumBooleanSolve is a Las‐Vegas quantum algorithm allowing to 
solve a system of m boolean equations in m variables. It uses O(n) qbits, requires the evaluation of, on average, 
O(2^0.462m) quantum gates. This complexity is obtained under certain algebraic assumptions. 
‘’ 
where [35] is: 
Jean‐Charles Faugère, Kelsey Horan, Delaram Kahrobaei, Marc Kaplan, Elham Kashefi, and Ludovic Perret. Fast quantum 
algorithm for solving multivariate quadratic equations. To appear. 

We have no doubt that the PQC’18 paper was done independently. However, this paper was only available 2017.12.15; 
so after NIST’s submission deadline. 

In fact, [35] was submitted to PKC’18 and rejected with quite unfair reasons to our point of view. Anyway, the situation 
is as it is. [35] was only made publicly available after the PQC’18 paper. 

The current version of [35] is available here:  https://eprint.iacr.org/2017/1236.pdf 
It is currently under revision. We will inform the list as soon as the paper is available. This will be a better basis for 
comments; rather than (over)interpreting the slides on GeMSS/DualModeMS; that are somewhat unrelated to the issue. 

Best Regards, 

Ludovic Perret, on the behalf of the authors of [35] (Jean‐Charles Faugère, Kelsey Horan, Delaram Kahrobaei, Marc 
Kaplan, Elham Kashefi) 

> Le 30 avr. 2018 à 09:44, D. J. Bernstein <djb@cr.yp.to> a écrit : 
> 
> I'm writing to correct some misimpressions regarding asymptotic MQ 
> security that are created by the GeMSS/DualModeMS presentation: 
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From: Ward Beullens <ward@beullens.com> 
Sent: Wednesday, May 02, 2018 4:42 PM 
To: pqc-comments 
Cc: pqc-forum@list.nist.gov 
Subject: OFFICIAL COMMENT: HiMQ-3 

Dear all, 

TL;DR: The security proof of HiMQ‐3 (Theorem 4) is flawed. 

The HiMQ‐3 submission document claims that the HiMQ‐3 signature scheme is EUF‐CMA secure provided that it is hard 
to find a solution for a system of quadratic equations in the HiMQ‐3 family. In other words, the claim is that if the 
scheme is UF‐KOA secure (univeral forgery under key‐only attack), then the scheme is also EUF‐CMA secure. 

The proof of this claim is to be found in [1] (Theorem 4.1), where the same claim is made for the ELSA signature scheme. 
The proof is very similar to the classic proof of [2] for the security of a hash‐and‐sign signature scheme based on a 
trapdoor permutation. However, the trapdoor function used by the HiMQ‐3 scheme is not a permutation, and this 
causes the proof to fail. 

The proof programs a random oracle by sampling random x, and returning P(x), where P is the public key. In the 
trapdoor permutation setting this is a valid approach, because there is no way to distinguish (x,P(x)) from (P^{‐1}(y),y), 
for x and y uniformly distributed variables on the domain and codomain of P respectively. When P is no longer a 
permutation (as is the case for HiMQ‐3 and ELSA) this might no longer be the case. (In fact, P^{‐1}(y) is not even uniquely 
defined) This means that the adversary is no longer guaranteed to function correctly in the simulated environment and 
that the proof fails. 

Kind regards, 
Ward 

[1] Shim, Kyung‐Ah, Cheol‐Min Park, and Namhun Koo. "An Existential Unforgeable Signature Scheme Based on 
Multivariate Quadratic Equations." International Conference on the Theory and Application of Cryptology and 
Information Security. Springer, Cham, 2017. 

[2] Bellare, Mihir, and Phillip Rogaway. "Random oracles are practical: A paradigm for designing efficient protocols." 
Proceedings of the 1st ACM conference on Computer and communications security. ACM, 1993. 
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From: Ryo Fujita <rfujita140411@gmail.com>
Sent: Wednesday, July 18, 2018 1:58 AM
To: pqc-forum
Cc: pqc-comments
Subject: Re: OFFICIAL COMMENT: HiMQ-3

EUF‐CMA security on multivariate signature schemes was discussed in [3]. There, it is described how to modify the 
signature scheme to achieve EUF‐CMA in the random oracle model. Likewise, it seems that HiMQ‐3 may also achieve 
EUF‐CMA. 

Kind regards, 
Ryo 

[3] Sakumoto K., Shirai T., Hiwatari H. (2011) On Provable Security of UOV and HFE Signature Schemes against Chosen‐
Message
Attack. In: Yang BY. (eds) Post‐Quantum Cryptography. PQCrypto 2011. Lecture Notes in Computer Science, vol 7071.
Springer, Berlin, Heidelberg

2018年5月3日木曜日 5時42分28秒 UTC+9 Ward Beullens: 

Dear all, 

TL;DR: The security proof of HiMQ‐3 (Theorem 4) is flawed.  

The HiMQ‐3 submission document claims that the HiMQ‐3 signature scheme is EUF‐CMA secure provided that it is hard 
to find a solution for a system of quadratic equations in the HiMQ‐3 family. In other words, the claim is that if the 
scheme is UF‐KOA secure (univeral forgery under key‐only attack), then the scheme is also EUF‐CMA secure. 

The proof of this claim is to be found in [1] (Theorem 4.1), where the same claim is made for the ELSA signature 
scheme. The proof is  very similar to the classic proof of [2] for the security of a hash‐and‐sign signature scheme based 
on a trapdoor permutation. However, the trapdoor function used by the HiMQ‐3 scheme is not a permutation, and this 
causes the proof to fail.  

The proof programs a random oracle by sampling random x, and returning P(x), where P is the public key. In the 
trapdoor permutation setting this is a valid approach, because there is no way to distinguish (x,P(x)) from (P^{‐1}(y),y), 
for x and y uniformly distributed variables on the domain and codomain of P respectively. When P is no longer a 
permutation (as is the case for HiMQ‐3 and ELSA) this might no longer be the case. (In fact, P^{‐1}(y) is not even 
uniquely defined) This means that the adversary is no longer guaranteed to function correctly in the simulated 
environment and that the proof fails.   

Kind regards, 
Ward 

[1] Shim, Kyung‐Ah, Cheol‐Min Park, and Namhun Koo. "An Existential Unforgeable Signature Scheme Based on
Multivariate Quadratic Equations." International Conference on the Theory and Application of Cryptology and
Information Security. Springer, Cham, 2017.

[2] Bellare, Mihir, and Phillip Rogaway. "Random oracles are practical: A paradigm for designing efficient protocols."
Proceedings of the 1st ACM conference on Computer and communications security. ACM, 1993.
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From: LOUISY Anne-Elise <anne-elise.louisy@thalesgroup.com>
Sent: Tuesday, August 07, 2018 10:38 AM
To: pqc-comments
Cc: pqc-forum@list.nist.gov
Subject: OFFICIAL COMMENT: HiMQ-3

Dear HiMQ-3 team, 

There seem to be contradictions between the description of the third layer of the central map and the matrices 
presented in the analysis of known attacks (figure 2 of the supporting documentation). 

In the description, it is written that the polynomials of the third layer of the central map are of the form: 

f(x)= sum_i,j beta_i,j x_i x_j + theta(x) + theta’(x) + epsilon x_(o1+o2+k) 

where the i,j in the sum are between v +1 and v1. 

For the definition of theta and theta’, it is written that the coefficients are such that symmetric matrix associated 
to the quadratic part of f has full rank, which implies that the quadratic part of f involves all n variables. 

However, not all variables appear in f. For the k-th polynomial of the third layer, x_(v+1),…,x_(v1) appear in the 
sum, x_(v1+1),..,x_v2 appear in theta (assuming the modulo is o2 and that 1 is added to the result) and 
x_(v2+1),…, x_n appear in theta’ (assuming again that 1 is added to the subscript). All the other variables, 
save for x_k that appears in theta and theta’, are not in f. 

Moreover, with the definition of the third layer given in the description of the central map, we get matrices with 
non-zero coefficients only in the square corresponding to the sum and on line k and column k resulting from 
theta and theta’ (x_k appear in the products x_k x_i for several different i between v1+1 and n).  

(the theoretical secret key size provided  also suggests that they are more coefficients that the one given in the 
description), 

Sincerely,  

A-E. Louisy,

Student in cryptography at Versailles University 
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From: 심경아 <shimkah221@gmail.com>
Sent: Thursday, September 13, 2018 5:13 AM
To: pqc-comments
Subject: OFFICIAL COMMENT: HiMQ-3

Dear A‐E. Louisy,     

Thank you for your comments.     

There is a typo. The current formulas 

\Theta_i(x)=\sum_{j=1}^{v_1} \gamma_{i,j}x_i x_{v_1+(i+j‐1) (mod o_3),  

\Theta_i'(x)=\sum_{j=1}^{v_2} \gamma_{i,j}'x_i x_{v_2+(i+j‐1) (mod o_3) 

should be changed to 

\Theta_i(x)=\sum_{j=1}^{v_1} \gamma_{i,j}x_j x_{v_1+(i+j‐1) (mod o_2), 

\Theta_i'(x)=\sum_{j=1}^{v_2} \gamma_{i,j}'x_j x_{v_2+(i+j‐1) (mod o_3), 

Note that $1 \le A (mod B) \le B$ for an integer $A$ and a positive integer $B$, 

in our definition. 

Kind regards 

Kyung‐Ah Shim 

**************************************************************************** 

Answer to Our Security Proof.  

Due to the use of the multivariate quadratic map requiring additional random Vinegar variables, our trapdoor function is 
not permutation and the signature distribution is not uniformly distributed as presented in [1]. The authors [1] make the 
distribution of signatures uniform by using a random salt to the message being hashed and re‐choosing a random salt 
instead of Vinegar variables.    

We can use the same way to prove unforgeability of our scheme. For it, we need to propose a modified version: the 
modified signing algorithm is the same as the original one except that  

‐choose a random r \in {0, 1}^R, compute H(m, r)=h.  

‐If one of the linear systems has no signature then choose another random r’ and try again.  
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‐Then the signature is (\tau, r). 

In Verify algorithm, to verify a signature (\tau, r) on a message m, check whether the equation \cal P(\tau)=H(m, r) holds 
or not.    

In the security proof, the H‐query should be changed as:    

For H‐queries, the tuples in H‐list are of the form (m_i, c_i, \tau_i, r_i, P(\tau_i)). When {\cal A} queries H at m_i \in \{0, 
1\}^*,    

i) If the query already appears on H‐list in a tuple (m_i, c_i, \tau_i, r_i, P(\tau_i)) then {\cal} B returns H(m_i, 
r_i)=P(\tau_i). 

ii) Otherwise, {\cal B} picks a random coin c_i \in {0,1} with Pr[c_i=0]=\frac{1}{q_S+1}. 

‐If c_i=1 then {\cal B} chooses a random \tau_i \in F_q^n and r_i \in {0, 1}^R, adds a tuple (m_i, c_i, \tau_i, r_i, P(\tau_i)) 
to H‐list and returns H(m_i, r_i)=P(\tau_i). 

‐ If c_i=0 then {\cal B} adds (m_i, c_i, r^*, *, \eta) to H‐list from the instance and returns H(m_i, r^*)=\eta, where \eta is 
the given MQ‐instance. 

   

For Sign Queries. When {\cal A} makes a Sign‐query on m_i, \cal B finds the corresponding tuple (m_i, c_i, \tau_i, r_i, 
P(\tau_i)) from H‐list.    

‐If c_i=1 then \cal B responds with (\tau_i, r_i). 

‐If c_i=0 then \cal B reports failure and terminates.    

Then the distribution of the outputs H(m_i, r_i) of our random oracle is identical to the distribution of \cal P(\tau), \tau 
\in_R F_q^n, since \tau is uniformly distributed over F_q^n and it is a valid signature satisfying \cal P(\tau)=H(m, r).  

The rest of the proof is the same as that in [2].    

[1] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari, On Provable Security of UOV and HFE Signature Schemes 

against Chosen‐Message Attack, PQCrypto 2011, LNCS 7071, pp. 68–82, 2011. 

[2] Kyung‐Ah Shim, Cheol‐Min Park, Namhun Koo: An Existential Unforgeable Signature Scheme Based on Multivariate 
Quadratic Equations. ASIACRYPT (1) 2017: pp. 37‐64, 2017. 

   



   

                            
                                
                              

                          
                        

        
                        
           

                          
      
                      
           

         
         

                   

                      
                                              
                                                  

   
                 

                
                     

       
                 

                  
                      

                              
                          
                    
                             
       

 
     

From: simona s <simona.samardziska@gmail.com> 
Sent: Monday, September 03, 2018 8:11 AM 
To: pqc-comments 
Cc: pqc-forum@list.nist.gov 
Subject: OFFICIAL COMMENT: MQDSS 

Dear all, 

Recently, after a related inquiry by Eliane Koussa and Ludovic Perret, we noticed that 
we have made a mistake in the choice of parameters in the NIST submission of MQDSS. 
In particular, the number of rounds in the submission is twice bigger than it is 
actually needed for the respective security level. This means that the number of 
rounds can be halved without affecting the security of the scheme, while 
substantially improving its performance: 
the signing and verification time will be halved, and (even more importantly,) 
the signature size will be halved. 

We therefore announce a new Version 1.1 of MQDSS, in which this mistake 
has been corrected. 
The specification and implementation of MQDSS Version 1.1. are available through our 
(brand new) web site http://mqdss.org
(Direct link to specification: http://mqdss.org/files/MQDSS_Ver1point1.pdf 
and to reference implementation https://github.com/joostrijneveld/MQDSS/tree/NIST) 

The new parameters of MQDSS give the following performance results: 

Public key (bytes) | Secret key (bytes) | Signature (KiB) 
MQDSS‐31‐48 46 16 16.15 
MQDSS‐31‐64 64 24 33.23 

Reference implementation: 
keygen (cycles) | signing (cycles) | verification (cycles) 
MQDSS‐31‐48 1302K 26500K 19674K 
MQDSS‐31‐64 2769K 84615K 63210K 

Implementation using AVX2 instructions: 
keygen (cycles) | signing (cycles) | verification (cycles) 
MQDSS‐31‐48 1078K 3683K 2504K 
MQDSS‐31‐64 2495K 8709K 6183K 

We respectively hope that NIST will take into account the new parameters of MQDSS for 
the first round of the PQC standardization process, especially since they only improve 
the performance of the scheme (the security remains the same). 
We also understand that NIST has the right to evaluate the candidates based solely 
on the initial submission. 

Sincerely, 
The MQDSS team 

1 



NIST PQ Round 1 Multivariate Signatures Survey 45

8 Summary and Selection Criteria Discussion

The performance in terms of speed of multiple multivariate submissions suffer
because of the requirement that the submission be in ANSI C with no assem-
bly or platform dependent vector instructions. It is certainly natural to have
these instruction sets for someone working in this area. Something that might
be interesting to consider is how appropriate the restriction may seem for a fair
comparison depending on the target application. We might have different opin-
ions if we are selecting schemes to secure the internet versus an application in a
sensor network.

Speed seems to be an issue with a few of these schemes. Key size is possibly
even a greater burden for a couple of these schemes. On the other hand, there
are some novelties in the submissions affecting key size.

HiMQ-3 requires the coefficients to be nonzero and if a variable takes the
value zero then the efficient inversion collapses. Also, it is not clear from the
analysis of equivalent keys whether the submitters considered the preservation
of this property under the key transforms.

LUOV has a very interesting pair of modifications to reduce key size at the
cost of efficiency. The property that some of the public key can be selected
randomly has been known for almost a decade, but the field lifting idea is just
a year old.

Three of the submissions are simply parameter selections for two cryptosys-
tems that are twenty years old and extremely well studied. We can have a great
deal of confidence in the schemes and the parameters, though far more agressive
for the HFEv− schemes, seem to be both competitive with other parametriza-
tions in the literature as well as solid.

The one submission in this group with a proof of security, MQDSS, selects
parameters invalidating the proof. In fact, the scheme might have had compa-
rable performance to its peers if the submitters had adhered to the parameter
restrictions the proof required.
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