
Improved Cryptanalysis of HFEv- via Projection

Jintai Ding1, Ray Perlner2, Albrecht Petzoldt2, and Daniel Smith-Tone2,3

1Department of Mathematical Sciences, University of Cincinnati,
Cincinnati, Ohio, USA

2National Institute of Standards and Technology,
Gaithersburg, Maryland, USA

3Department of Mathematics, University of Louisville,
Louisville, Kentucky, USA

jintai.ding@uc.edu, ray.perlner@nist.gov,
albrecht.petzoldt@nist.gov,daniel.smith@nist.gov

Abstract. The HFEv- signature scheme is one of the most studied mul-
tivariate schemes and one of the major candidates for the upcoming stan-
dardization of post-quantum digital signature schemes. In this paper, we
propose three new attack strategies against HFEv-, each of them using
the idea of projection. Especially our third attack is very effective and is,
for some parameter sets, the most efficient known attack against HFEv-.
Furthermore, our attack requires much less memory than direct and rank
attacks. By our work, we therefore give new insights in the security of
the HFEv- signature scheme and restrictions for the parameter choice of
a possible future standardized HFE instance.

Key words: Multivariate Cryptography, HFEv-, MinRank, Gröbner
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1 Introduction

Multivariate Cryptography is one of the main candidates for establishing cryp-
tosystems which resist attacks with quantum computers (so called Post-Quantum
Cryptosystems). Especially in the area of digital signature scheme, there exists
a large number of practical multivariate schemes such as UOV [13] and Rainbow
[7].
Another well known multivariate signature scheme is the HFEv- signature scheme,
which was first proposed by Patarin, Courtois and Goubin in [17]. Most notably
about this scheme are its very short signatures, which are currently the shortest
signatures of all existing schemes (both classical and post-quantum).
In this paper we propose three new attacks against the HFEv- signature scheme,
each of them using the idea of projection. This means that each of our attacks
reduces the number of variables in the system by guessing, either before or after
the attack itself.
The most interesting results hereby are provided by a distinguishing attack,
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which is related to the hybrid aproach of the direct attack [1]. The attack is very
effective and outperforms, for selected parameter sets, all other attacks against
HFEv-. Furthermore, the memory requirements of our attack are far less than
those of direct and MinRank attacks.
The rest of the paper is organized as follows. In Section 2, we give a short
overview of multivariate cryptography and introduce the HFEv- cryptosystem,
while Section 3 reviews the previous cryptanalysis of this scheme. Section 4 de-
scribes our first two attacks, which combine the MinRank attack with the idea of
projection. In Section 5, we present then our distinguishing attack, whose com-
plexity is analyzed in Section 6. Finally, Section 7 presents an idea to improve
the complexity of our attack, and Section 8 concludes the paper.

2 Hidden Field Equations

2.1 Multivariate cryptography

The basic objects of multivariate cryptography are systems of multivariate quadratic
polynomials over a finite field F. The security of multivariate schemes is based
on the MQ Problem of solving such a system. The MQ Problem is proven to be
NP-Hard even for quadratic polynomials over the field GF(2) [12] and believed
to be hard on average (both for classical and quantum computers).

To build a multivariate public key cryptosystem (MPKC), one starts with an
easily invertible quadratic map F : Fn → Fm (central map). To hide the struc-
ture of F in the public key, we compose it with two invertible affine (or linear)
maps T : Fm → Fm and U : Fn → Fn. The public key of the scheme is therefore
given by P = T ◦ F ◦ U : Fn → Fm. The relation between the easily invertible
central map F and the public key P is referred to as a morphism of polynomials.

Definition 1 Two systems of multivariate polynomials F and G are said to be
related by a morphism iff there exist two affine maps T ,U such that G = T ◦F◦U .

The private key consists of the three maps T ,F and U and therefore allows to
invert the public key.

To generate a signature for a document (hash value) h ∈ Fm, one computes
recursively x = T −1(h) ∈ Fm, y = F−1(x) ∈ Fn and z = U−1(y) ∈ Fn.
To check the authenticity of a signature z ∈ Fn, one simply computes h′ =
P(z) ∈ Fm. If the result is equal to h, the signature is accepted, otherwise re-
jected.

This process is illustrated in Figure 1.
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Signature Generation

Signature Verification

h ∈ Fm - x ∈ Fm - y ∈ Fn - z ∈ Fn
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P

T −1 F−1 U−1

Fig. 1. Signature Generation and Verification for Multivariate Signature Schemes

2.2 HFE Variants

The HFE encryption scheme was proposed by J. Patarin in [16]. The scheme
belongs to the BigField family of multivariate schemes, which means that it uses
a degree n extension field E of F as well as an isomorphism φ : Fn → E. The
central map is a univariate polynomial map over E of the form

F(X) =

qi+qj≤D∑
0≤i,j

αijX
qi+qj +

qi≤D∑
i=0

βiX
qi + γ.

Due to the special form of F , the map F̄ = φ−1 ◦ F ◦ φ is a quadratic map over
the vector space Fn. In order to hide the structure of F in the public key, F̄ is
composed with two affine maps T and U , i.e. P = T ◦ F̄ ◦ U .
After the basic scheme was broken by direct [11] and rank attacks [14], sev-
eral versions of HFE for digital signatures have been proposed. Basically, these
schemes use two different techniques: the minus and the vinegar modification.
For the HFEv- signature scheme [17], the central map F has the form

F(X,xV ) =

qi+qj≤D∑
0≤i,j

αijX
qi+qj +

qi≤D∑
i=0

βi(x1, . . . , xv)Xqi + γ(x1, . . . , xv),

where βi and γ are linear and quadratic maps in the vinegar variables xV =
(x1, . . . , xv) respectively. Defining ψ : Fn+v → E×Fv by ψ = φ× idv, the public
key has the form

P = T ◦ φ−1 ◦ F ◦ ψ ◦ U : Fn+v → Fn−a

with two affine maps T : Fn → Fn−a and U : Fn+v → Fn+v, and is a multivariate
quadratic map with coefficients and variables over F.

Signature Generation: To generate a signature z for a document d, one uses
a hash function H : {0, 1} → Fn−a to compute a hash value h = H(d) ∈ Fn and
performs the following four steps

1. Compute a preimage x ∈ Fn of h under the affine map T and set X =
φ(x) ∈ E.
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2. Choose random values for the vinegar variables x1, . . . , xv and substitute
them into the central map to obtain the parametrized map FV .

3. Solve the equation FV (Y ) = X over the extension field E by Berlekamp’s
algorithm.

4. Compute y = φ−1(Y ) and the signature z ∈ Fn+v by z = U−1(y||x1|| . . . ||xv).

Signature Verification: To check the authenticity of a signature z, the verifier
computes h = H(d) and h′ = P(z). If h′ = h holds, the signature is accepted,
otherwise rejected.

3 Previous Cryptanalysis

3.1 Direct Algebraic Attack

The direct algebraic attack is the most straightforward way to attack a multi-
variate cryptosystem such as HFE(v-). In this attack, one considers the public
equation P(z) = h as an instance of the MQ-Problem. In the case of HFEv-,
the public system is slightly underdetermined. In order to make the solution
space zero dimensional, one therefore fixes some of the variables in order to get
a determined system before applying an algorithm like XL [4] or a Gröbner basis
method such as F4 or F5 [9, 10]. In some cases one gets better results by guess-
ing additional variables, even if this requires to run the Gröbner basis algorithm
several times (hybrid approach [1]).

Experiments have shown that the public systems of HFE and its variants can be
solved significantly faster than random system [11, 15]. This phenomenon was
studied by Ding et al. in a series of papers [5, 6, 8]. In [8] it was shown that the
degree of regularity of solving an HFEv- system is upper bounded by

dreg, HFEv− ≤

{
(q−1)·(r+a+v−1)

2 + 2 q even and r + a odd
(q−1)·(r+a+v)

2 + 2 otherwise
. (1)

3.2 MinRank

The historically most effective attack on the HFE family of cryptosystems is
the MinRank attack which exploits the algebraic consequence of a low degree
bound D. This low degree bound leads to the fact that the central map has a
low Q-rank.

Definition 2 The Q-rank of a multivariate quadratic map f : Fn → Fn over the
finite field F with q elements is the rank of the quadratic form Q on E[X0, . . . , Xn−1]
defined by Q(X0, . . . , Xn−1) = φ ◦ f ◦ φ−1(X), under the identification X0 =

X,X1 = Xq, . . . , Xn−1 = Xqn−1

.
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As an example, consider an odd characteristic instance of HFE. We may write
the homogeneous quadratic part of F as

[
X Xq · · · Xqn−1

]


α0,0 α′0,1 · · · α′0,d−1 0 · · · 0

α′0,1 α1,1 · · · α′1,d−1 0 · · · 0
...

...
. . .

...
...

. . .
...

α′0,d−1 α
′
1,d−1 · · · αd−1,d−1 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0




X
Xq

...

Xqn−1

 ,

where α′i,j = 1
2αi,j and d = dlogq(D)e. Clearly, this quadratic form on the ring

E[X0, . . . , Xn−1] has rank d, and thus the HFE central map has Q-rank d.

The first iteration of the MinRank attack is the Kipnis-Shamir (KS) attack of
[14]. One can via polynomial interpolation express the public key as a quadratic
polynomial G over the degree n extension field E. By construction there is an
F-linear map T−1 such that T−1 ◦ G has rank d, thus there is a rank d ma-
trix that is an E-linear combination of the Frobenius powers of G. This turns
recovery of the transformation T into the solution of a MinRank problem over E.

A significant improvement to this method for HFE is the key recovery attack
of [2]. The first significant observation made was that an E-linear combination
of the public polynomials has low rank as a quadratic form over E. By con-
structing a formal linear combination of the public polynomials with variable
coefficients, one can collect the polynomials representing (d+1)× (d+1) minors
of this linear combination, which must be zero by the Q-rank bound. The ad-
vantage this technique offers is that the coefficients of the polynomial are in F;
thus, the Gröbner basis calculation can be performed over F, while the variety
is computed over E. This minors modeling method is significantly more efficient
than the KS-attack when the number of equations is similar to the number of
variables. (In contrast, for schemes such as ZHFE, see [20], it seems that the
KS modeling is more efficient, probably due to the large number of variables in
the Gröbner basis calculation, see [3].) The complexity of the KS-attack with
minors modeling is asymptotically O(n(dlogq(D)e+1)ω), where 2 ≤ ω ≤ 3 is the
linear algebra constant.

The MinRank approach can also be effective in attacking HFE-. The key ob-
servation in [21] is that not only does the removal of an equation increase the
Q-rank by merely one, there is also a basis in which it only increases the degree
by a factor of q. Thus HFE- schemes with large base fields are vulnerable to the
minors modeling method of [2], even when multiple equations are removed. The
complexity of the KS-attack with minors modeling for HFE- is asymptoticaly
O(n(dlogq(D)e+a+1)ω), where a is the number of equations removed and 2 ≤ ω ≤ 3
is the linear algebra constant.



6 J. Ding, R. Perlner, A. Petzoldt & D. Smith-Tone

4 Variants of MinRank with Projection

As first explicitly noted in [8], the Q-rank of the central map is increased by
v with the introduction of v vinegar variables and therefore the min-Q-rank of
HFEv- is dlogq(D)e+a+v. We now discuss techniques for turning this observation
into key recovery. From this point on, let r denote dlogq(D)e, that is, the Q-rank
of the HFE component of the central map.

4.1 MinRank then Projection

The simplest way to attempt an attack utilizing the low Q-rank of the cen-
tral map of HFEv- is to directly apply a MinRank attack and then attempt
to discover the vinegar subspace. To this end, consider the representation Φ :
E → A defined by Φ(X) = (X,Xq, . . . , Xqn−1

). We may map directly from an
n-dimensional vector space to A via right multiplication by the matrix

Mn =


1 1 · · · 1

θ θq · · · θq
n−1

θ2 θ2q · · · θ2qn−1

...
...

. . .
...

θn−1 θ(n−1)q · · · θ(n−1)qn−1

 ,

with the choice of a primitive element E = F(θ). Right multiplication by Mn

corresponds to the linear map Φ ◦ φ.
We may incorporate the vinegar variables into the picture by simply appending
them to A. Specifically, define the map M̃n : Fn+v → A × Fv by right multipli-
cation by the matrix

M̃n =

[
Mn 0n×v
0v×n Iv

]
,

where Iv is the identity matrix. We may then represent any HFEv- map as a
single (n+ v)× (n+ v) matrix with coefficients in E. Note specifically that any
function bilinear with respect to the vinegar variable xn and the HFE variables
x0, . . . , xn−1 can be encoded in row and/or column n of the quadratic form

xQx> = xM̃nRM̃>
n x
>,

where R ∈M(n+v)×(n+v)(E).

Let F be defined by xFx> = f(x) where f is the central map of HFEv-. We will
say that F is the matrix representation of f over A× Fv. Let F∗i be the matrix
representation of the ith Frobenius power of f over A × Fv. Then we have, for
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example the following shape for F∗0:

α0,0 · · · α0,d−1 0 · · · 0 β0,n · · · β0,n+v−1

...
. . .

...
...

. . .
...

...
. . .

...
α0,d−1 · · · αd−1,d−1 0 · · · 0 βd−1,n · · · βd−1,n+v−1

0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · 0
β0,n · · · βd−1,n 0 · · · 0 βn,n · · · βn,n+v−1

...
. . .

...
...

. . .
...

...
. . .

...
β0,n+v−1 · · · βd−1,n+v−1 0 · · · 0 βn,n+v−1 · · · βn+v−1,n+v−1


.

Here we see that rank(F∗0) = r + v. The structure of F∗1 is similar with the
upper left HFE block consisting of αi,j shifted down and to the right and raised
to the power of q, and the symmetric blocks of mixing monomials shifted down
and to the right with a more complicated function applied to the βi,j coefficients
to respect the Frobenius map.
Now let U,T and Pi be the matrix representations of the affine isomorphisms
U and T and the public quadratic forms Pi, respectively. Then we derive the
relation

(P1, . . . ,Pn)T−1Mn = (UM̃nF∗0M̃>
n U>, . . . ,UM̃nF∗(n−1)M̃>

n U>).

Thus UM̃nF∗0M̃>
n U> is an E-linear combination of the public quadratic forms.

Since UM̃n is invertible, the rank of this linear combination is the rank of F∗0,
which is r + v.
Following the analysis of [21, Theorem 2], we see that the effect of the minus
modifier on the matrix representation of f over A× Fv is to add to it constant
multiples of itself with a cyclic shift of the rows and columns down and to the
right within the HFE block. Thus for HFEv-, F∗0 has the shape given in Figure 2.
The rank of this quadratic form is r + a+ v.
The solution of the MinRank instance provides an equivalent transformation T ′

to the output transformation (up to the choice of extension to full rank) and

a matrix L representing the low Q-rank quadratic form U′M̃nF̂∗0M̃>
n U′> over

A × Fv, where P = T ′ ◦ φ−1 ◦ f̂ ◦ φ ◦ U ′ is an equivalent private key. Now that
the correct output transformation is recovered, it remains to recover the vinegar

subspace of L = U′M̃nF̂∗0M̃>
n U′>.

First, note that the kernel K of L is orthogonal to the vinegar subspace, so
we may simplify the analysis by projecting to L̂ which acts on the orthogonal
complement of a codimension one subspace of the kernel. The strategy now is
to compose codimension one projection mappings π with L̂ to filter out the
vinegar variables. It suffices to choose projections whose kernels are orthogonal
to ker(L̂).
If there is a nontrivial intersection between the kernel of π and the vinegar
subspace, the rank of ΠL̂Π> will be reduced. In contrast, if this intersection is
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Fig. 2. The shape of the matrix representation of the central map of HFEv- over A×Fv.
The shaded areas represent possibly nonzero entries.

empty the rank of ΠL̂Π> should remain the same. To see this, note that by an
argument symmetric to that of [21, Lemma 1] we may equivalently define L̂ ◦ π
by

L̂ ◦ π = U−1 ◦ [(φ ◦ π1 ◦ φ−1 ◦ S1)× π2] ◦ S2,

where S1 : Fn → Fn is nonsingular, S2 : Fn+v → Fn × Fv is an isomorphism,
π1 : E → E has degree at most qn−r−a (since the intersection of the image of

L̂ ◦ π and the HFE subspace is at least (r + a)-dimensional) and π2 : Fv → Fv

is linear. Since the degree bound of the central HFE quadratic form is qr+a, the
highest monomial degree in the composition of π2 with this map is bounded by

qn−1, thus the polynomials π1, π
q
1, . . . , π

qr+a

1 are linearly independent.
The probability that the linear form defining ker(π) which is orthogonal to the

kernel of L̂ lies in the vinegar subspace is q−(r+a+1). Once such a vector is
recovered, this step is repeated on the orthogonal complement of the discovered
vectors until a basis for the vinegar subspace is found. Thus the complexity of
this method is

CompMP = O
((

n+ r + v + 1

r + a+ v + 1

)ω

+ (r + a+ v + 1)ωqr+a+1

)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant.

4.2 Projection then MinRank

Another approach using MinRank is a “project-then-MinRank” approach. In
this strategy, one randomly projects the plaintext space onto a codimension k
subspace and then applies the MinRank attack. Since the projection π cannot
increase the Q-rank of the central map, the Q-rank is at most r + a+ v.
We may choose k = n − r − a − v, and expect that the rank of P ◦ π is still
r + a+ v, due to the fact that the HFE component is still of full rank, as noted
in the previous section. If, however, there is a nontrivial intersection between
the kernel of π and the vinegar subspace, the rank of this quadratic form will be
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less than r + a+ v. The probability this occurs is qk−n = q−(r+a+v).
Generalizing, we may project further in an attempt to eliminate possibly more
vinegar variables and reduce the rank further. As long as the image of π is of
dimension at least the sum of

√
n− a and the target rank, the minors system is

still fully determined. Therefore, consider eliminating c vinegar variables. This
requires k to be at least n− a− r + c−

√
n− a. The probability that there is a

c-dimensional intersection between the kernel of π and the vinegar subspace is

then qc(k−n)−(c
2) ≥ q(

c+1
2 )−cr−ca−c

√
n−a.

Once at least one vinegar variable is found, the new basis can be utilized to filter
out the remaining vinegar variables as in the previous method. The complexity
of the this method is

CompPM = O
(
qc(r+a+

√
n−a)−(c+1

2 )
(
n+ r + v − c+ 1

r + a+ v − c+ 1

)ω)
.

5 The Distinguishing attack

In this section we present our distinguishing attack against the HFEv- signa-
ture scheme. The idea of the attack is closely related to the direct attacks with
projection (also known as the hybrid approach). We define

V = span(Un+1,Un+2, . . . ,Un+v),

where Ui denotes the i-th component of the affine transformation U : Fn+v →
Fn+v. Therefore, V is the space spanned by the affine representations of the
vinegar variables x1, . . . , xv

Our attack is based on the following two observations.

– Consider the two HFEv- public keys P1 = HFEv−(n,D, a, v1) and P2 =
HFEv−(n,D, a, v2). As shown in Table 1 and Figure 3, direct attacks against
P1 and P2 behave differently. In particular, we can distinguish between the
two systems P1 and P2 by looking at the step degrees of the F4 algorithm.
This remains possible, even when adding (not too many) linear equations
to the systems P1 and P2 (thus reducing the number of variables) before
applying a Gröbner basis method (hybrid approach).

– Let us consider the special case where v2 = v1 − 1 holds. By adding one
linear equation ` ∈ V to P1 we remove the influence of one of the vinegar
variables form the system P1. A direct attack against the so obtained system
P ′1 should therefore behave in exactly the same way as a direct attack against
the system P ′2, obtained by adding an affine equation `′ 6∈ V to the system
P2 (see Table ??).

5.1 The Distinguisher

Based on the two above observations, we can now construct a distinguisher as
follows.
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v HFEv-(26, 17, 1, v) HFEv-(33, 9, 3, v)

0 2,3,4,3,4 2,3,4,4,4

1 2,3,4,4,4 2,3,4,5,4

2 2,3,4,5,4 2,3,4,5,5

3 2,3,4,5,5 2,3,4,5,5,5,5,5,6

4 2,3,4,5,5,5,5,5 2,3,4,5,6,6

5 2,3,4,5,6

random system 2,3,4,5,6 2,3,4,5,6,6
Table 1. Step degrees of the F4 algorithm against determined HFEv- systems for
different values of v

We start with an HFEv- public key P = HFEv−(n,D, a, v). P consists of n− a
quadratic equations in n + v variables over the field GF(2). After adding the
field equations {x2

i − xi : i = 1, . . . , n+ v}, we append k randomly chosen linear
equations `1, . . . , `k to the system. Therefore, our new system P ′ consists of

– the n− a quadratic HFEv- equations from P
– n+ v field equations x2

i − xi = 0 (i = 1, . . . , n+ v)
– the k linear equations `1, . . . , `k

Altogether, the system P ′ consists of 2n−a+ v+k equations in n+ v variables.
After having constructed the system P ′, we solve it via a Gröbner basis algo-
rithm. Due to observation 2, the behaviour of this algorithm should depend on
the fact whether one of the linear equations `i added to the system (or a linear
combination of the `i) is an element of the vinegar space V. In fact, we can
observe a difference in the step degrees of the algorithm (see Example 1 below).
Formally written, we can use our technique to distinguish between the two cases

span(`1, . . . , `k) ∩ V = ∅ and

span(`1, . . . , `k) ∩ V 6= ∅. (2)

However, in most cases that span(`1, . . . , `k) ∩ V 6= ∅, the intersection contains
only a single equation ˜̀.

Remark: We have to note here that the number k of linear equations added to
the system P is upper bounded by a value k̄(n,D, a, v). When adding more than
k̄ linear equations to the system, a distinction between the two cases of (2) is
no longer possible.

Example 1: We consider HFEv- systems with (n,D, a) = (33, 9, 3) and varying
values of v ∈ {0, . . . , 4}. The resulting HFEv- public keys are systems of n−a =
30 quadratic equations in n + v variables. After appending the field equations
x2
i − xi = 0 to the systems, we added randomly chosen linear equations to
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reduce the effective number of variables in our systems. Figure 3 shows the
degree of regularity of a direct attack using F4 against the (projected) systems.
For comparison, the figure also contains data for a random system of the same
size.

Fig. 3. Direct attack against (projected) HFEv- systems with (n,D, a) = (33, 9, 3) and
varying values of v

As Figure 3 shows, there exists, for every parameter set (n,D, a, v) a number k̄
such that

1) When adding less than k̄ linear equations to the system, the degree of regu-
larity of a direct attack against the projected system is the same as that of
a direct attack against the unprojected system.

2) When adding k ≥ k̄ linear equations, the system behaves exactly like a
random system of the same size.

Let us now look at our distinguisher. For this, we skip the parameter set (n,D, a, v) =
(33, 9, 3, 0) since, in this case, V = ∅ holds. However, as Table 2 shows, we can,
for each of the values v ∈ {1, . . . , 4}, disitnguish between the two cases of (2).
For abbreviation, we use in the table L := span(`1, . . . , `k̄). Note that the evolu-
tion of the step degrees for HFEv-(33,9,3,4) is the same as for a random system
of the same size.

5.2 The Attack

Based on the distinguisher presented in the previous section, we can construct
an attack against HFEv- as follows.
By performing the distinguishing experiment with a large number of systems P ′
(containing different linear equations), we can find a set of k linear equations
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step degrees of F4

v k̄ n− k̄ for L ∩ V = ∅ for L ∩ V = {˜̀}
4 3 27 1,2,3,4,5,6 1,2,3,4,5,5,5,5

3 4 26 1,2,3,4,5,5,5 1,2,3,4,5,5

2 4 26 1,2,3,4,5,5 1,2,3,4,5,4

1 9 21 1,2,3,4,5 1,2,3,4,4,4

Table 2. Distinguisher Experiments on HFEv-(33, 9, 3, v) systems for different values
of v

`1, . . . , `k such that span(`1, . . . , `k) ∩ V = {˜̀1}. Using this, we can determine
the exact form of ˜̀

1 as follows. Note that there exist coefficients αi ∈ {0, 1}
(i = 1, . . . k) such that

˜̀
1 =

k∑
i=1

αi · `i.

In order to determine the exact form of this linear combination, we remove one
of the linear equations (say `1) from the system P ′ and add another randomly
chosen linear equation. If we still can observe a difference in the behaviour of
a direct attack compared to a random choice of linear equations, we know that
the coefficient α1 must be 0. Otherwise, the coefficient α1 must be 1, and we
have to add `1 back to the system.
We repeat this step for i = 2, . . . , k to determine the values of all the coefficients
αi (i = 1, . . . , k). This will give us the exact form of the linear equation ˜̀

1 ∈ V.
Having found ˜̀, we add it to the original HFEv-(n,D, a, v) system. The result-
ing system will behave exactly like an HFEv-(n,D, a, v− 1) system, and we can
again use our distinguisher and repeat the above procedure to find a second
linear equation ˜̀

2 ∈ V. Note that this will be much easier than finding ˜̀
1 (see

next section).
After having found v linear independent equations ˜̀

1, . . . ˜̀
v ∈ V and adding

them to the HFEv- system, the resulting system will behave exactly like an
HFE-(n,D,a) system (i.e. we have no vinegar variables any more). We can then
use any attack against HFEv- (e.g. [21]) to break the scheme.
We analyze the complexity of our distinguisher and our attack in the next section.

Let us shortly return to Example 1. When we start with the system P =HFEv-
(33,9,3,4), we can use our distinguisher to find a set {`1, . . . , `k} of linear equa-
tions such that span(`1, . . . , `k) ∩ V = {˜̀1}. After having recovered the exact
form of ˜̀, we can append it to the system P, which will then behave exactly
like an HFEv-(33,9,3,3) system (with one projected variable). Let us denote this
new system by P(1). We can then use the distinguisher on P ′ to obtain a sec-
ond linear equation ˜̀

2 ∈ V. Adding ˜̀
2 to the system P ′ leads to a system P(2)

behaving exactly like a HFEv-(33,9,3,2) system. By continuing this process, we
obtain the system P(4) corresponding to an HFEv- (33,9,3,0) system. We can
then break this scheme by using any attack on HFE-.
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Algorithm 1 Our Distinguishing Attack

Input: HFEv-(n,D, a, v) public key Pv

Output: equivalent HFE-(n,D, a) public key
1: Append k̄ randomly chosen linear equations `1, . . . , `k̄ in the variables x1, . . . , xn+v

(as well as the field equations x2
i − xi = 0) to the HFEv public key.

2: Solve the resulting quadratic system by F4. If the step degrees of the F4 algorithm
differ from the standard case, we know that span(`1, . . . , `k) ∩ V 6= ∅. Denote the
only element of this intersection by ˜̀.

3: Repeat step 1 and 2 until having found a set of linear equations `1, . . . , `k such
thatl span(`1, . . . , `k) ∩ V 6= ∅

4: Determine the exact form of ˜̀ by sequentially removing linear equations (try and
error).

5: Append the linear equation ˜̀ to the system P. The resulting system P ′ will behave
exactly like an HFEv-(n,D,a,v-1) public key.

6: Repeat the above steps until having found v linear independent equations
˜̀
1, . . . , ˜̀

k ∈ V.

6 Complexity Analysis

In this section we analyze the complexity of our distinguishing attack against
HFEv-.

In the first step of our attack, we have to find one linear equation ˜̀ ∈ V by
using our distinguisher and a following application of the remove-and-add strat-
egy.
Therefore, the complexity of this first step of our attack is determined by three
factors:

1. The number of times we have to run the distinguisher in order to find a set
of linear equations `1, . . . , `k such that span(`1, . . . , `k) ∩ V = ˜̀

2. The cost of one run of the distinguisher
3. The cost of recovering ˜̀

The first number is determined by

– The probability that a randomly chosen linear equation in n+ v variables is
contained in the space V spanned by the linear representation of the vine-
gar variables Un+1, . . . ,Un+v A randomly chosen linear equation ¯̀ in n + v
variables can be seen as a linear combination of the components of U , i.e.

¯̀=

n+v∑
i=1

λi · Ui. (3)

The reason for this is that U is an invertible map from Fn+v to itself, which
means that the components of U form a basis of this space. There are 2n+v

choices for the parameters λi (i = 1, . . . , n + v). On the other hand, every
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element λ̃ of the space V spanned by the linear transformations of the vinegar
variables v1, . . . , vv can be written in the form

˜̀=

n+v∑
i=n+1

λi · Ui.

The probability that a randomly chosen linear ¯̀equation lies in V is therefore
given by

prob(¯̀∈ V) = 2−n. (4)

The reason for this is that all the coefficients λi (i = 1, . . . , n) in the repre-
sentation (3) of ¯̀ must be zero.

– The number of linear equations (and linear combinations thereof) added to
the public key
When adding k linear equations `1, . . . , `k to the public key, we do not have
to consider the k equations `1, . . . , `k itself, but also all linear combinations
of the form

` =

k∑
i=1

λi`k.

The total number of linear equations we have to consider is therefore not k,
but 2k.

Therefore, when adding k linear equations `1, . . . , `k to the public key, the prob-
ability of finding one linear equation ˜̀∈ V, is given by

prob = 1− (1− 2−n)2k

≈ 2k−n.

In order to find one linear equation ˜̀∈ V, we therefore have to run our distin-
guisher about 2n−k times.

A single run of our distinguisher corresponds to one run of the F4 algorithm.
The cost of this can be estimated as

3 ·
(
n′

dreg

)2

·
(
n′

2

)
,

where n′ is the number of variables in the quadratic system and dreg is the so
called degree of regularity.
With regard to the number n′ of variables we find that the linear equations
added to the public key are “absorbed” at a very early step of the F4 algorithm,
i.e. they are used to reduce the number of variables in the system. This fact is
illustrated in Table 3. In the table, we consider two random systems, both con-
taining 25 quadratic equations. However, while the equations of system A are
polynomials in 25 variables, the polynomials of system B contain 35 variables.
On the other hand, system B additionally contains 10 linear equations.
As the table shows, both systems behave very similarly. Starting at step 2 (de-



Improved Cryptanalysis of HFEV- via Projection 15

25 equations, 25 variables 25 quadr. + 10 lin. equations, 35 variables

step degree matrix size time degree matrix size time

1 10 × 36 0.0

1 20 × 36 0.0

1 2 25 × 326 0.0 2 330 × 631 0.0

2 3 652 × 2626 0.02 3 650 × 2626 0.02

3 4 7,894 × 14,498 1.27 4 7864 × 15568 1.34

4 5 52,488 × 52,956 79.86 5 52197 × 52665 80.26

5 6 248,705 × 245,506 179.34 6 248,273 × 108,524 182.24
Table 3. Experiments with random systems

gree 3), there is no significant difference between the matrix sizes or the running
times of the single steps between the two systems.
We can therefore conclude that the quadratic systems we consider in our distin-
guishing attack (n−a quadratic equations + k linear equations in n+v variables)
behave just like systems of n− a quadratic equations in n+ v − k variables.

Compared to this, the cost of recovering ˜̀ is negligible. Remember that ˜̀ can be
written as a linear combination of `1, . . . , `k, i.e.

˜̀=

k∑
i=1

λi`i.

As described in the previous section, we remove for this one linear equation `i
from the system P ′. By adding a randomly chosen linear equation, we obtain a
system P ′′ of the same dimensions. We apply the F4 algorithm against the two
systems P ′ and P ′′. If we observe a difference in the behaviorof the algorithm,
we know that the coefficient λi in the above linear combination is 1. Otherwise
we have λi = 0. By running this test for all i ∈ {1, . . . , k}, we can determine
all the coefficients λi and therefore recover ˜̀. In order to recover ˜̀, we there-
fore need 2 · k runs of the F4 algorithm, which is far less than the 2n−k F4-runs
above. Therefore, we do not have to consider this step in our complexity analysis.

Altogether, we can estimate the complexity of this first step of the attack by

Complexity = 2n−k · 3 ·
(
n+ v − k
dreg

)2

·
(
n+ v − k

2

)
. (5)

In the presence of quantum computers, we can speed up the searching step of
this attack using Grover’s algorithm. Such we get

ComplexityDistinguisher; quantum = 2(n−k)/2 · 3 ·
(
n+ v − k
dreg

)2

·
(
n+ v − k

2

)
.

As equation (5) shows, the complexity decreases when we increase the number
k of linear equations added to the public key. However, as already mentioned in
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the previous section, our distinguisher fails when k is too large. We denote the
maximal value of k for which our distinguisher works by k̄(n,D, a, v).

In order to remove all the vinegar variables from the system P, we have to
repeat this process v times. However, with decreasing v we find (see Table 2)

1) the number k̄ of linear equtions that we can add to the public system in-
creases

2) the degree of regularity of the systems generated by our distinguisher de-
creases

Therefore, the following steps of our attack will be much faster than the first
step. This means, that we can estimated the complexity of the whole attack as
in (5).

However, in order to estimate the complexity of our attack against an HFEv-
scheme in practice, we still have to answer the following two questions.

– What is the maximal number k̄ of linear equations we can add to the public
key such that our distinguisher works?

– What is the degree of regularty of the systems generated by our distin-
guisher?

In order to answer these questions, we once more consider Example 1 (see pre-
vious section).
First, let us consider the second question. As a comparison of Table 2 and Fig-
ure 3 shows, the degree of regularity of solving the systems generated by our
distinguisher corresponds exactly to the degree of regularity of an unprojected
HFEv- system with parameters (n,D, a, v). As stated in [18], we can estimate
this value as

dreg = br + a+ v + 7

3
c, (6)

where r = blogq(D − 1)c+ 1.

To answer the second question, let us take a closer look on the behavior of
the hybrid approach against random systems (see Figure hybrid). We start with
a random system of 30 quadratic equations in 30 variables over GF(2). After
appending the field equations x2

i −xi = 0 (i = 1, . . . , 30), we add k ∈ {0, . . . , 20}
linear equations to the system. Table 4 shows, for which values of k we reach
given values of regularity. Let us define k̂(d) to be the maximal number of linear
equations we can add to the random system, such that the degree of regularity of
a direct attack against the system is greater or equal to d, i.e k̂(6) = 3, k̂(5) = 9

and k̂(4) = 15.
By comparing these numbers with the values of k̄ listed in Table 2, we find

k̂(d?) ≤ k̄ ≤ k̂(d?) + 1,

where d? is the degree of regularity of a direct attack against an HFEv-(n,D, a, v)
scheme (see equation (4)).
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dreg #k of added linear equations

3 for k ≥ 16

4 for 10 ≤ k ≤ 15

5 for 4 ≤ k ≤ 9

6 for k ≤ 3
Table 4. Degree of regularity of projected random systems with 30 equations

In order to estimate the complexity of our attack against an HFEv-(n,D, a, v)
scheme, we therefore proceed as follows.

1. We compute the degree of regularity of the unprojected HFEv-(n,D, a, v)
system (see equation (4)). Denote the result by d?.

2. We estimate the maximal number k̄ of linear equations we can add to the
public HFEv- system by k̂(d?). This value can be obtained as follows.
The degree of regularity of a random system of m = n−a quadratic equations
in n′ variables over GF(2) can be estimated as the smallest index d for which
the coefficient of Xd in

1

1−X
·
(

1−X2

1−X

)n′

·
(

1−X2

1−X4

)m

is non-positive [22].

We can use this equation to determine the values of k̂(d?).

By substituting the so obtained values of k̄ and d? into formula (5), we therefore
get a close estimation of the complexity of our distinguishing attack against an
HFEv-(n,D, a, v) system.

Example 2: Consider an HFEv- system over GF(2) with (n,D, a, v) = (91, 5, 3, 2).
We obtain r = blog2(D− 1)c+ 1 = 3. The degree of regularity of a direct attack
against the HFEv- system (with field equations) is given by

dreg = b3 + 3 + 2 + 7

3
c = 5.

Therefore, we get

Complexitydirect = 3 ·
(

88

5

)2

·
(

88

2

)
≈ 263.9.

After adding k = 68 randomly chosen linear equations to the system, the step
degrees of the F4 algorithm look like 1; 1, 2, 3, 4. When one of the linear equation
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was chosen from the vinegar space V, we obtain 1; 1, 2, 3, 3.
Therefore, we can estimate the complexity of our distinguisher by

ComplexityDistinguisher = 223 ·
(

25

4

)2

·
(

25

2

)
≈ 260.1,

which is nearly 16 times faster than a direct attack.
The complexity of a MinRank attack (MinorsModeling against the scheme can
be estimated by

ComplexityMinRank =

(
n+ r + a+ v

r + a+ v

)2.3

≈ 285,

the complexity of classical brute force attacks 296. Therefore, for the above pa-
rameter set, our attack is the most efficient classical attack against HFEv-.
With regard to the memory consumption, we get

Memorydirect =

(
88

5

)2

≈ 250.4,

MemoryMinRank =

(
n+ r + a+ v

r + a+ v

)2

≈ 274.3,

Memorydistinguisher =

(
25

4

)2

≈ 227.3.

As these data show, our attack requires much less memory than the direct
and the MinRank attack. Since attacks against large instances of multivariate
schemes often fail due to memory restrictions, the small memory consumption
is a huge benefit of our attack.

7 Improvements to the Direct Attack

It is possible that the average cost of the distinguishing step can be reduced by
selecting the projection in a slightly nonrandom fashion. In particular, we may
consider simultaneously testing a set of corank k projections π whose kernels are
contained within the kernel of a single corank k+1 projection, π1. In such a case,
we can treat the image of π1 in the plaintext space as being generated by the
variables x1, ..., xn+v−k−1, and the image of π as being generated by the same
variables plus one additional variable xn+v−k, which defines a 1-dimensional sub-
space of the kernel of π1, which will vary depending on the choice of π.

To see how this might be of some advantage, note that typical Gröbner basis
techniques work by finding polynomials pi of degree d−2 that can be multiplied
by the public polynomials fi such that

∑
pifi = q, where q is a polynomial of

degree at most d− 1. In our case we will be looking for polynomials pi over the
variables x1, ..., xn+v−k such that

∑
pifi(π) = q.
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Our strategy will be to first solve for all pi over the variables x1, ..., xn+v−k−1,
such that ∑

pifi(π) = q(mod xn+v−k).

As the above equation is equivalent to
∑
pifi(π1) = q, this computation can

be reused for multiple different choices of π. Note also, that any solution to∑
pifi(π) = q is also a solution to

∑
pifi(π) = q(mod xn+v−k), although p may

contain monomials involving xn+v−k that would be removed by modular reduc-
tion. We can therefore generate solutions to

∑
pifi = q from linear combinations

of:

1. polynomials of the form
∑
pifi(π) , where pi is a solution over the variables

x1, ..., xn+v−k−1 of
∑
pifi(π) = q(mod xn+v−k); and,

2. polynomials of the form
∑
xn+v−kp

′
ifi(π), where p′i has degree at most d−3.

As both types of polynomial are divisible by xn+v−k in their degree-d terms,
finding a linear combination of these polynomials with degree d−1 only requires
finding cancellations among as many distinct monomials as would be required
when solving a system with degree of regularity d− 1.

It should be noted that a projection of degree k + 1 is approximately q times
more likely to have a nontrivial intersection between its kernel and the vinegar
subspace as is a projection of degree k, and conditional on ker(π1) having such
a nontrivial intersection, the probability that ker(π) also having a nontrivial
intersection is approximately 1 in q. It is therefore optimal to choose q different
πs for each π1. It should further be noted that the above strategy can be applied
recursively with sets of q π1s having their k + 1 dimensional kernels contained
within the kernel of a corank k + 2 projection π2. While it is clear that a large
savings is possible when projections that eliminate a vinegar variable can already
be distinguished at first degree fall, the analysis is somewhat more difficult when
multiple step increases are required to see a difference in behavior. We therefore
do not analyze this possible improvement in our complexity analysis.

8 Conclusion

In this paper we proposed three new attacks against the HFEv- signature scheme,
each of them using the idea of projection. Especially our distinguishing attack
is very effective and, for some parameter sets, the most efficient existing attack
against HFEv-. Furthermore, the memory requirements of our attack are much
less than that of direct and rank attacks. Future work includes in particular a
thorough investigation of our ideas to impove the attack (see Section 7).
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