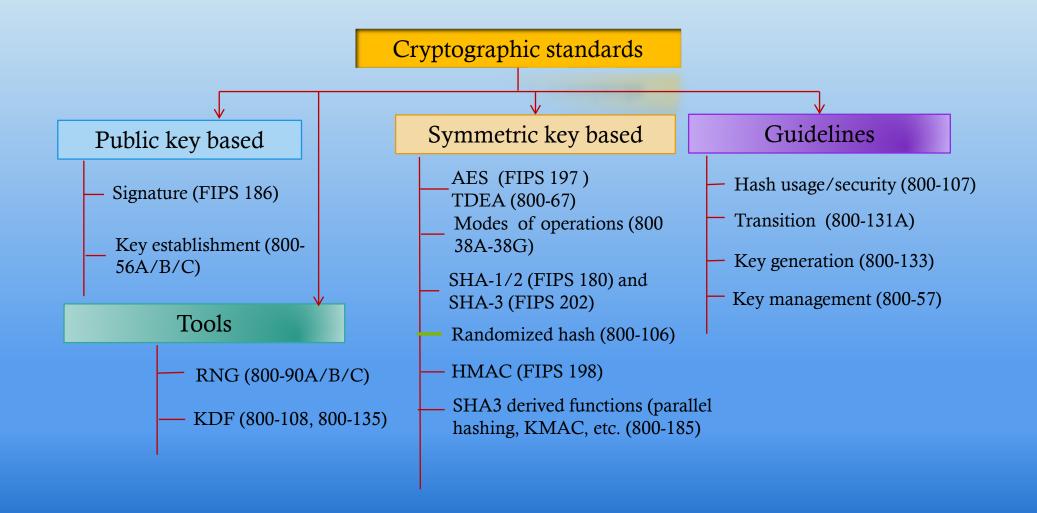
# Next Generation Cryptographic Standards – Challenges and Solutions

Lily Chen Computer Security Division, Information Technology Lab National Institute of Standards and Technology (NIST)

# **History and Fact Sheet**




- NIST developed the first encryption standards in 1970s, Data Encryption Standard (DES), and published as Federal Information Processing Standard (FIPS) 46
- Over 40 years, NIST continues to evolve its cryptographic standards
  - Enable the usage of new cryptographic technologies to respond the growing application demand
  - Enhance security strength to deal with advanced and more sophisticated cryptanalysis methods

Nearly all commercial laptops, cellphones, Internet routes, VPN servers, and ATMs use NIST Cryptography



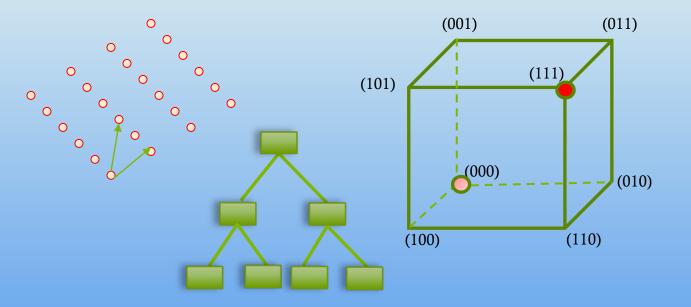
## NIST Cryptographic Standards

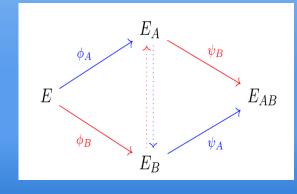


## Challenges in Next Generation of Crypto Standards NIST

- Deal with extremes
  - Extremely powerful attack technologies, e.g. using quantum computers
  - Extremely constrained implementation environment, e.g. sensors
- Transition, forward secrecy, and backward compatibility
  - Increased key sizes, stronger hash functions
  - Post-quantum cryptography
- Extended security objectives and features
  - Deal with more sophisticated cryptanalysis methods, e.g. side-channel attacks, multiple-key/target attacks, etc.
  - Demand useable features, e.g. misuse resistance
- Special usage vs. general purpose standards
  - Some standards are developed for special usage, e.g. lightweight cryptography
- Synchronize with industry best practice and promote international adoption
  - Organizations tend to create standards divergent from existing ones

# Post-Quantum Cryptography


## Quantum Impact




- Quantum computing changed what we have believed about the hardness of discrete log and factorization problems
  - Shor's algorithm with full scale quantum computers can solve integer factorization and discrete logarithm problems in polynomial time
- As a result, the public key cryptosystems deployed since the 1980s will need to be replaced
  - RSA signatures and ECDSA (FIPS 186-4)
  - Diffie-Hellman Key Agreement over finite fields and elliptic curves (NIST SP 800-56A)
  - RSA encryption (NIST SP 800-56B)
- Quantum computing also impacts security strength of symmetric key based cryptographic algorithms
  - Grover's algorithm can find n bit AES key with approximately  $\sqrt{2^n}$  operations It can be mitigated by increasing the key size

## Post-Quantum Cryptography (PQC)

- Some actively researched PQC categories
  - Lattice-based
  - Code-based
  - Multivariate
  - Hash/Symmetric key -based signatures
  - Isogeny-based schemes





$$p^{(1)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(1)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(1)} \cdot x_i + p_0^{(1)}$$

$$p^{(2)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(2)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(2)} \cdot x_i + p_0^{(2)}$$

$$\vdots$$

$$p^{(m)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(m)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(m)} \cdot x_i + p_0^{(m)}$$

### NIST PQC Process Update: Milestones and Timeline NIST

- 2016 Determined criteria and requirements
   Announced call for proposals
  - 2017 Received 82 submissions
     Announced 69 1<sup>st</sup> round candidates
    - 2018 1<sup>st</sup> round analysis
       Held the 1<sup>st</sup> NIST PQC standardization Conference
      - 2019 Announced 26 2<sup>nd</sup> round candidates
         Held the 2<sup>nd</sup> NIST PQC Standardization Conference



- > 2020 Announced 3rd round 7 finalists and 8 alternate candidates
  - > 2021 Held the 3<sup>rd</sup> NIST PQC Standardization Conference (Virtual)



> 2022 Make the 1st set selection

st set selection

> 2022-2023 Release draft standards and call for public comments

### Scope, Security Definitions, Strength Levels for PQC NIST

- The scope of NIST PQC standardization
  - Public key encryption /Key establishment
  - Digital signature
- Definitions (proofs recommended, but not required) used to judge whether an attack is relevant
  - IND-CPA/IND-CCA2 for encryptions and KEMs
  - EUF-CMA for signatures
- Security strength is defined at 5 levels

| Level | Security Description                                        |  |  |  |  |  |  |
|-------|-------------------------------------------------------------|--|--|--|--|--|--|
| Ι     | At least as hard to break as AES128 (exhaustive key search) |  |  |  |  |  |  |
| II    | At least as hard to break as SHA256 (collision search)      |  |  |  |  |  |  |
| III   | At least as hard to break as AES192 (exhaustive key search) |  |  |  |  |  |  |
| IV    | At least as hard to break as SHA384 (collision search)      |  |  |  |  |  |  |
| V     | At least as hard to break as AES256 (exhaustive key search) |  |  |  |  |  |  |

### First, Second, and Third Round PQC Candidates



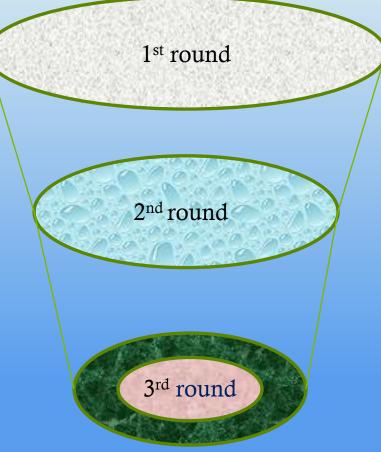
| 1 <sup>st</sup> round              |        | Signatures                              | KEM | <b>KEM/Encryption</b> |   |                       | Overall |         |   |
|------------------------------------|--------|-----------------------------------------|-----|-----------------------|---|-----------------------|---------|---------|---|
| Lattice-base                       | d      | 5                                       |     | 21                    |   | 26                    |         |         |   |
| Code-based                         |        | 2                                       |     | 17                    |   | 19                    |         |         |   |
| Multi-variat 2 <sup>nd</sup> round |        | und                                     | Sig | Signatures            |   | KEM/Encryption        |         | Overall |   |
| Stateless                          |        | e-based                                 |     | 3                     |   | 9                     |         | 12      |   |
| Hash/Symn<br>based                 | Code-  | based                                   |     |                       |   |                       | 7       | 7       |   |
| Other                              | Multi  | Iulti 3rd round                         |     | Signatures <b>k</b>   |   | <b>KEM/Encryption</b> |         | Overall |   |
| Total                              |        | Lattice-based                           | 2   |                       | 3 | 3                     | 2       | 5       | 2 |
|                                    | Hash/  | Code-based                              |     |                       | ] | 1                     | 2       | 1       | 2 |
|                                    | Isoger | Multi-variate                           | 1   | 1                     |   |                       |         | 1       | 1 |
| or                                 |        | Stateless Hash<br>or Symmetric<br>based |     | 2                     |   |                       |         |         | 2 |
| Isoge                              |        | Isogeny                                 |     |                       |   |                       | 1       |         | 1 |
|                                    |        | Total                                   | 3   | 3                     | Z | 4                     | 5       | 7       | 8 |

## Challenges and Considerations in Selecting Algorithms NIST

#### Security

- Security levels offered
- (confidence in) security proof
- Any attacks
- Classical/quantum complexity

#### Performance


- Size of keys, signature, ciphertext
- Speed of KeyGen, Enc/Dec, Sign/Verify
- Decryption failures

#### Algorithm and implementation characteristics

- IP issues
- Side channel resistance
- Simplicity and clarity of documentation
- Flexibility

#### Other

- Official comments/pqc-forum discussion
- Papers published/presented



# **PQC Transition and Migration**

- Public key Cryptography has been used everywhere; two most important usages:
  - Communication security; and
  - Trusted platforms
- Transition and migration are full of exciting adventures
  - Understand new features, characters, implementation challenges
  - Identify barriers, issues, show-stoppers, needed justifications, etc.
  - Reduce the risk of disruptions in operation and security
- For early adoption in code-signing, NIST specified stateful hash-based signature in SP 800-208 (LMS, XMSS)
- Accommodate hybrid mode, e.g. PQC+ECDH, in SP 800-56C key derivation
  - Enable current NIST approved mechanisms, e.g. ECDH, to obtain FIPS 140 validation

Lightweight Cryptography

## Lightweight Cryptography (LWC)



- Recognize the need for cryptographic standards for applications in constrained environment that are not well-served by existing NIST standards
  - Internet of Things (IoT), pervasive computing, healthcare monitoring systems, automated management of supply chain, public transportation, telephone cards
- The task is not light more challenging in the design to satisfy all security requirements and performance for different platforms
  - Achieve security goals with limited resource The attackers are not constrained
  - Different applications/constraints Industry presented needs are either very broad or too specific
- It has been a difficult decision for NIST to initiate a call for proposals
  - Held two workshops in 2015 and 2016 to get industry feedback and published NISTIR 8144 in 2017
  - The scope and criteria were finalized in 2018 Call for contributions

## Lightweight cryptography candidates



- Scope: Authenticated Encryption with Additional Data (AEAD) with optional hashing functionality
- The candidates include (tweakable) block ciphers, stream ciphers, permutation, ...
  - The designs reflected the technology advance in the past 20 years
  - Most designs are based on the primitives used in the standardized algorithms such as AES, Keccak, PHOTON, SKINNY, SPONGENT, etc.
  - Many candidates claimed additional security features: Nonce misuse security, releasing unverified plaintext (RUP) security, post-quantum security, side-channel resistance, etc.



## Towards Lightweight Cryptography Standards

- Security analysis and maturity assessment were mainly provided by the design teams and independent third parties
- The performance is evaluated in software and hardware
  - Targeted devices, optimized implementations
  - Hardware API. FPGA, ASIC
- Expect to announce final winner(s) in summer of 2022



## Exploratory Projects and Long-term Strategy

## **Special Efforts**



- Next generation crypto standards shall provide additional features, e.g.
  - Threshold cryptography Prevent from single failure point through secure multiparty computation
  - Privacy enhanced cryptography Enable processing collected and protected data
- Continue to enhance open and transparency and improve scientific quality and useability of cryptographic standards
- Engage with application community and enable crypto agility for smooth transition
- Adopt industry best practice and work with standards organizations to promote global acceptance

### Threshold Cryptography - Eliminate single-point of failure

NIST

- Multi-party threshold schemes for key-based cryptographic primitives
  - Key-generation (e.g., RSA, ECC, AES)
  - Signing (e.g., RSA, ECDSA, EdDSA)
  - Enciphering (e.g., AES, lightweight ciphers)
  - Decryption (e.g., RSA)
  - Random number generation
  - Post-Quantum Cryptography (emerging standards)
- Towards guidelines on threshold implementations
- 2019-2020: Two workshops
  - Threshold schemes and implementations
  - Feedbacks from the community

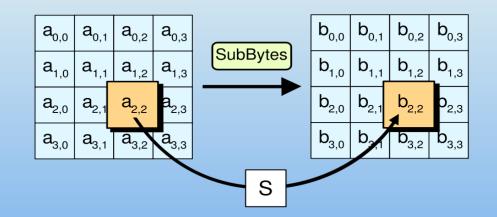


- NISTIR 8214 Threshold Schemes for Cryptographic Primitives: Challenges and Opportunities in Standardization and Validation of Threshold Cryptography
- NISTIR 8214a NIST Roadmap Toward Criteria for Threshold Schemes for Cryptographic Primitives – Call for public comments (July 2 – September 13, 2021)

### Privacy Enhancing Cryptography (PEC)



- Privacy enhancing cryptography is highly demanded in modern applications
- Some academic and industry initiatives approached various cryptographic tools for standardization, e.g.
  - Zero-knowledge proof (ZKProof)
  - Fully homomorphic encryption
- NIST researchers participated in and contributed to the initiatives
  - Evaluate potentials to standardize PEC tools
- NIST has organized "Special Topics on Privacy and Public Auditability" (STPPA) series" since January 2020




- NIST researchers conducted research on privacy solutions in Covid-19 contact tracing
  - Measure aggregate levels of encounters in a population while preserving the privacy of individuals

### **Cryptographic Publication Review**



- NIST has about 40+ years of history of publishing cryptographic standards
- It is critical to improve their scientific quality and useability to match advanced technology and meet the requirements of emerging applications
- In NISTIR 7977
  - *"Review standards and guidelines regularly. ... FIPS are reviewed at least every five years or more frequently if issues arise."*
- NIST Cryptographic Technology Group established Review Board
  - Assign internal reviewers, solicit public comments, and propose review decisions





- AES has published for 20 years!
- The 1<sup>st</sup> round of public comments (May 10, 2021 June 11, 2021)
- NISTIR 8319 Review of the Advanced Encryption Standard (July 2021)
  - A list of proposed changes

# Cryptographic Transition

- Transition to stronger cryptography is constantly required because
  - Increased computing power by Moore's Law
  - New computing technologies such as quantum computers
  - More sophisticated cryptoanalysis techniques
- Historically, NIST has guided many transitions (see SP 800-131A), e.g.
  - Block ciphers: DES  $\rightarrow$  Triple DES  $\rightarrow$  AES
  - Hash functions: SHA-1  $\rightarrow$  SHA-2 and SHA-3 families
  - RSA signature and encryption: modulus 1024 bits → ≥ 2048 bits (80 bit to minimum 112-bit security)
- Cryptographic agility is very important for future transitions
  - Allow to make smooth transition between algorithms and configurations



- NCCoE initiated project partnership for migration to Post-Quantum Cryptography
- Industry participants and other interested parties are invited to participate in the Migration to Post-Quantum Cryptography project. (See <u>NCCoE announcement</u>)

### Summary



- It is full of challenges and opportunities in developing next generation cryptography standards
- Future technologies will shape the trends of cryptography applications
- Next generation cryptography standards will deal with
  - Quantum threats with Post-quantum Cryptography
  - Protection demand for constrained environment with Lightweight Cryptography
- Transition will be constantly required
  - Cryptographic agility is the key
- Please join discussions through different mailing list (information is provided at each project website)
- Comments, questions, suggestions always help NIST to improve cryptographic standards communication is the key





#### lily.chen@nist.gov For more information on NIST cryptographic standards, please visit <u>http://csrc.nist.gov</u>