

11. State Still and a state of a second

Lily Chen

Computer Security Division, Information Technology Lab National Institute of Standards and Technology (NIST)

NIST Cryptographic Standards

1. S.S. HALL S. HALL MARKING SALAND

Quantum Impact

11. State Still and a state of a sound

Quantum computing changed what we have believed about the hardness of discrete log and factorization problems

- Using quantum computers, an integer n can be factored in polynomial time using Shor's algorithm
- The discrete logarithm problem can also be solved by Shor's algorithm in polynomial time

As a result, the public key cryptosystems deployed since the 1980s will need to be replaced

- RSA signatures, DSA and ECDSA (FIPS 186-4)
- Diffie-Hellman Key Agreement over finite fields and elliptic curves(NIST SP 800-56A)
- RSA encryption (NIST SP 800-56B)

We have to look for quantum-resistant counterparts for these cryptosystems

Quantum computing also impacted security strength of symmetric key based cryptography algorithms

- Grover's algorithm can find AES key with approximately $\sqrt{2^n}$ operations where n is the key length
- Intuitively, we should double the key length, if 2⁶⁴ quantum operations cost about the same as 2⁶⁴ classical operations

Quantum Impact to NIST Standards

NIST Team has been in action

- 2012 NIST begin PQC project
 - Research and build NIST team

A State & All & Martin and

- April 2015 1st NIST PQC workshop
- Feb 2016 NIST Report on PQC (NISTIR 8105)
- Feb 2016 NIST preliminary announcement of standardization plan

- Aug 2016 Draft submission requirements and evaluation criteria released for public comments
- Sep 2016 Comment period ends
- Dec 2016 Announcement of finalized requirements and criteria(Federal Register Notice)
- Nov. 30, 2017 Submission deadline, received 82 submissions
- Dec. 24, 2017 Announced the first round 69 algorithms, as "complete and proper"

PQC Families - Actively Researched as Examples

Lattice-based

- NTRUencrypt
- Signature, e.g. Bliss
- (Ring-based) Learning with Errors (e.g. Key Agreement - New Hope)

Code-based

McEliece encryption and the variants

11. State Still & Martin Stranger

Multivariate

Rainbow (signature), Quartz (signature), etc.

Hash-based signatures

LMS, XMSS, SPHINCS

Isogeny-based schemes

 Supersingular isogeny Diffie–Hellman key exchange (SIDH)

NIST Timeline

1. State & Alle Miller Martine and

NIST will hold the first PQC Standardization Workshop in April 12-13, 2018 Initial analysis phase 12-18 months Narrow the pool and hold the second workshop in late 2019 Second analysis phase 12-18 month May take third analysis phase if needed Expect draft standards in 2022-2023

Submissions to NIST Call for Proposals

Upon the submission deadline (Nov. 30, 2017), NIST received 82 submissions from 26 countries and 6 continents

After an initial review, 69 submissions are considered as complete and proper

At the time of this presentation, 3 of them have been confirmed as "broken" and 66 remains as the first round submissions

46 Key Establishment schemes

- 24 lattice-based
- 17 code-based
- 5 other (2 multi-variate, 1 RSA, 1 random walk, 1 isogeny-based)

A State & Aller Manual Contractor

20 Signature schemes

- 7 multi-variate
- 5 lattice
- 3 code-based
- 3 hash-based (or symmetric based)
- 2 other (1 RSA, 1 braids)

Tough Jobs Ahead

Secure analysis against both classical and quantum attacks

Secure against side-channel attacks

11.5.90 HALE AND MARKAN CONTRACTOR

Performance evaluation, including

- Computational efficiency
- Key size, signature size, ciphertext expansion
- Handling decryption failure, auxiliary functions, padding, etc.

Drop-in exercise to existing applications, check whether an algorithm can drop in

- a protocol like Internet Key Exchange (IKE) and Transport Layer Security (TLS)
- an application like software authentication (code signing)
- etc.

Join Us for PQC Standardization

11. State & tills & Martin State

For NIST PQC project, please follow us at https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Join discussion mailing list pqc-forum@nist.gov

