

PKI and Post-Quantum Cryptography

David Cooper March 5, 2019

Post-Quantum Algorithms

- Stateless cryptographic algorithms
 - NIST Post-Quantum Cryptography Standardization Process
 - https://csrc.nist.gov/projects/post-quantum-cryptography
 - pqc-comments@nist.gov
- Stateful hash-based signatures
 - Internet Research Task Force (IRTF) Crypto Forum Research Group (CFRG)
 - https://csrc.nist.gov/Projects/Stateful-Hash-Based-Signatures
 - https://csrc.nist.gov/News/2019/stateful-hbs-request-for-publiccomments

Stateful Hash-Based Signatures

- Two options, XMSS/XMSS^{MT} and LMS/HSS, specified by CFRG.
- Create large number of one-time signature (OTS) keys
 Root of tree
- Publish root of a tree of these keys

Stateful Hash-Based Signatures

- Very small public key ~ 60 bytes
- Moderate signature size ~ 2.5 to 8 KB
- Secure if hash function is secure (pre-image resistant), *if used correctly*.
- Smaller and faster signatures than stateless hashbased signatures (e.g., SPHINCS+).
- Significant risk from one-time key reuse!

Candidate Post-Quantum Algorithms

Signature Algorithms

- CRYSTALS-DILITHIUM
- FALCON
- GeMSS
- LUOV
- MQDSS
- Picnic
- qTESLA
- Rainbow
- SPHINCS+

Key Encapsulation Mechanisms

- BIKE
- Classic McEliece
- CRYSTALS-KYBER
 ·
- FrodoKEM
- HQC
- LAC
- LEDAcrypt (merger of LEDAkem/LEDApkc)
- NewHope
- NTRU (merger of NTRUEncrypt/NTRU-HRSS-KEM)
- NTRU Prime
- NTS-KEM
- ROLLO (merger of LAKE/LOCKER/Ouroboros-R)
- Round5 (merger of Hila5/Round2)

- RQC
- SABER
- SIKE
- Three Bears

Candidate Signature Algorithms

Algorithm	Туре	Public Key (bytes)	Signature (bytes)
CRYSTALS-DILITHIUM	Lattice	1184	2044
FALCON	Lattice	897	690
qTESLA	Lattice	1504	3104
LUOV	Multivariate	7536	1746

- Fast (or not too slow) signing and verification
- Moderate key and signature sizes

Candidate Signature Algorithms

Algorithm	Туре	Public Key (bytes)	Signature (bytes)
GeMSS	Multivariate	417,408	48
Rainbow	Multivariate	152,097	64

- Large (huge) public keys
- Very small signatures
- Performance:
 - GeMMS: fast verification; very slow signatures
 - Rainbow: fast signing and verification
- Maybe useful for applications such as Certificate Transparency?

Candidate Signature Algorithms

Algorithm	Туре	Public Key (bytes)	Signature (bytes)
Picnic	symmetric-key	32	13,786
SPHINCS+	Hash-based	32	8,080
MQDSS	Multivariate	62	32,882

- Very small public keys
- Large signatures
- Performance:
 - Picnic: somewhat slow signing and verification
 - SPHINCS+: very slow signing, moderate verification
 - MQDSS: slow signing and verification

PKI

- LAMPS Limited Additional Mechanisms for PKIX and SMIME
 - Algorithm Identifiers for HSS and XMSS for Use in the Internet X.509 Public Key Infrastructure - draft-vangeestx509-hash-sigs
 - Multiple Public-Key Algorithm X.509 Certificates drafttruskovsky-lamps-pq-hybrid-x509
 - Include second (post-quantum) public-key in non-critical extension
 - Include second (post-quantum) signature in non-critical extension

What to do now?

• Don't rush:

- https://spectrum.ieee.org/tech-talk/computing/hardware/the-usnational-academies-reports-on-the-prospects-for-quantumcomputing
- Issuing PQ certificates can wait until client software can process it.
- Don't know which algorithms will be standardized and/or implemented.
- Don't know whether clients will support multi-algorithm certificates.