Lizard

Carl A. Miller
NIST Computer Security Division
August 14, 2018

NIST PQC Seminar (not for public distribution)

The Basics

* |t'sapublic key encryption scheme and a key
encapsulation scheme.

It's a lattice-based scheme that exploits LWE (Learning

with Errors) and LWR (Learning with Rounding).

It has IND-CPA (chosen plaintext attack) and IND-CCA2
(adaptive chosen ciphertext attack) versions.

Simplified Protocols

(Based on this submission
and [Regev 2010])

Learning With Errors

Suppose that s is an unknown vector in Z7, and that we know several
approximate linear relations (mod g):

a; - S by

as - S bs

< ~
am S = bm

Here, a; € Z; and b; € Z,. Can we determine s’

Learning With Errors

More precisely, suppose that we are given the vectors ay, ..., a, € Z;
and we are given the values

bl : a; S+ e

b2 : Az * S + €9

b,, = a,-S-—+en,

where e;,...,e, € Z, are chosen according to a discrete Gaussian
distribution (with variance much smaller than q).

Learning With Errors

LWE is at least as hard as determining the length of the
shortest vector in a lattice.

Encryption with LWE

Suppose Alice has access to a black box that generates LWE

samples.
o

l(a b:=aes+e)

(a, (Mg/2) +b) a

-~

Private key: s Message: M (one bit)

Encryption with LWE

Bob can approximately determine b, and therefore
determine m. But, to everyone else the msg. looks random.

l(a,b:=a.s+e)

ety N
> ™
-

(a, (Mg/2)+b)

-~

Private key: s Message: M (one bit)

How does Alice generate LWE samples?

Alice adds & subtracts random equations from this system to
get a new equation.

PubliC
key

(unknown)
Gaussianin Z

Encryption with LWE

The linear combination of equations from the public key
gives Alice an equation she can use for the transmission.

(a, (Mg/2)+b)

foy
» ™
-

-~

Private key: S Message: M (one bit)
Public key: {a}, {b}

Alternatively ...

The public key can consist of equations with different s's.

Alternatively ...

The public key can consist of equations with different s's.

A Hypothetical Protocol

Bob computes a uniformly random matrix A, and sends AS + E.

Publickey: B=AS +E

-~

Private key- S jp ZnXm Message: M (one bit)
] q

A Hypothetical Protocol

Bob computes a uniformly random matrix A, and sends AS +E.
Alice sends back her encryption of M.
Bob computes ST ATr ~ BTr, and recovers M.

Publickey: B=AS +E

foy
> ™
-

(ATr, (mqg/2) +BTr) Ve

Message: M (one bit)

. . C nXm
Private key: Sin Zq Mask vector: rin {-1, o, 1}™

Main Protocols

Learning With Rounding (LWR)

Let p | g and s € Z;. In LWR, we are given the vectors ay, ..., a,, €
Z; and we are given the values

by = [(p/9)ai s| € Z,
by = [(p/@)as-s| €Z,

b = [(p/@)anm - s| € Z,

“round off to the nearest integer.”)

Lizard.CPA.KeyGen.

Operation:

Vectors with entries
In {-1, 0, 1}

Discrete Gaussian

. Generate a random matrj — Ly ",

. Set a secret matrix = (sg|| - - - ||s¢—1) by sampling each s; independenflly from the distri-
bution Z0,,(p):

.For 0 <+ <m-—1and 0 < j < ¢ -1, sample an integer F;; < DG,4, and then set
E = (E;;) € Z"*".

. Compute B:= —-AS+ F € ZZ‘X@.
5. Output the public key pk := (A||B) € Z;nx(nH) and the private key sk := S € {—1,0, 1}"*¢.

| izard . CPA.Enc. Vectors with entries

In {-1, 0, 1}

Operation:

1. Generate an m dimensional vector r € B,,, 5, from the distribution HWT,, (h,).
2. Compute a := [(p/q) - A'r] € Z? and b := [(p/q) - ((¢/2) - M + B'r)] € Z{.
3. Output the ciphertext ¢ := (a,b) € Ly X ij.

Lizard.CPA.Dec.

Operation:

1. Parse the ciphertext ¢ = (a, b).

2. Compute M = [(2/p) - (b + Sta)] € Z&.
3. Output the message M.

Protocols in Polynomial Rings

The protocols
_izard.CPA.KeyGen
_izard.CPA.Enc

_izard.CPA.Dec
are similar, except that that the matrices are restricted to

Rq = Zg|x]/ (2™ + 1)

(which is a subring of Zg ")

IND-CCA2 Protocols
A random bit string

Lizard. CCA.Enc. is used both to pad
the message, and to

: chooserr.
Operation:

. Generate a random vector § < {0, 1}*.

. Set ¢ := M & G(8) € Z$ and c3 := H'(9).
. Set r:= H(6) € {-1,0,1}™.
. Compute a := [(p/q) - A'r] € Z and b := |(p/q) - ((¢/2) - 0 + B'r]) € Z{.
. Output ¢ = (cq, (a,b), c3).
Possible parameters:

g =2048 d =384 m = 1024
pP=512 n =816 ell =384

Analyses & Performance

Security Proofs

The authors prove that the original protocol is IND-CPA secure,
under the assumption that both LWE and LWR distributions are
indistinguishable from random.

Idea (?): Replacing the public key and the ciphertext with a
random string makes only a negligible amount of difference, so
an adversary can get only a negligible amount of information
from both.

Key & Message Sizes

Plaintext | Ciphertext | Public Key | Private Key
(bytes) (bytes) (bytes) (bytes)

CCA_CATEGORY1_N536 32 1,648 1,622,016 137,216
CCA_CATEGORY1_N663 32 983 1,882,112 169, 728
CCA_CATEGORY3_N816 48 2.496] 2,457,600 313, 344
CCA_CATEGORY3_N952 48 2.768] 2,736, 128 365, 563
CCA_CATEGORY5_N1088 64 3,328 6,553,600 557,056
CCA_CATEGORY5_N1300 64 3,752 3,710,976 665, 600
RING_CATEGORY1 32 2,208 4,096 257
RING_CATEGORY3_N1024 48 4,272 4,096 513
RING_CATEGORY3_N2048 48 3,496 8,192 369
RING_CATEGORYS5 64 8,512 8,192 513

Operations Parameter

Lizard. CCA

RLizard.CCA

Table 4: Size of Lizard. CCA and RLizard.CCA

Performance

Operations Parameter

KeyGen

(ms)

Enc
(ms)

Dec
(ms)

CCA_CATEGORY1_N536

156.320

0.031

0.034

CCA_CATEGORY1_N663

176.570

0.032

0.036

Liard.cca |CCA_CATEGORY3_N816

250.555

0.052

0.064

CCA_CATEGORY3_N952

275.555

0.057

0.072

CCA_CATEGORY5_N1088

663.879

0.062

0.086

CCA_CATEGORY5_N1300

392.828

0.071

0.101

RING_CATEGORY1

0.449

0.036

0.039

RLizard. CCA RING_CATEGORY3_N1024

0.513

0.057

0.075

RING_CATEGORY3_N2048

0.875

0.078

0.093

RING_CATEGORY5S

0.920

0.108

0.135

Table 5: Performance of Lizard. CCA and RLizard . CCA

Hardware Implementation?

Architecture of Lizard.CPA The Fig. 1 shows the hardware architecture of Lizard.CPA.

Section to determine subtraction

Section for initialization

0

2

2+(M«9)

c2

Fig. 1: Data path of Lizard.CPA

Claimed Advantages

The protocol is efficient in cases where the message space is
small (e.g., 32 bits)?

Because of the structure of the encryption, a receiver can “add”

plaintexts without decrypting them (i.e., limited homomorphic
encryption).

Lizard

Carl A. Miller
NIST Computer Security Division
August 14, 2018

NIST PQC Seminar (not for public distribution)

