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High-Level View



Generic LWE Key Exchange

Alice chooses large n, and a Gaussian noise vector ain (Z/nZ)".
Alice publicizes a uniformly random rxr matrix M, and sends

A:= (Ma + Gaussian noise) to Bob.
(The LWE assumption implies that it’s hard to recover a fromA.)




Generic LWE Key Exchange

Bob chooses a Gaussian noise vector b and publicizes
B := MTb + Gaussian noise.

Alice and Bob can now both approximately compute b"Ma. This
info can be used to share a small # of secret bits.




Generic LWE Key Exchange

How can this be optimized?
- Use matrices (possibly w/ algebraic structure) in place of g, b.
- Use a huge modulus.




Arithmetic in ThreeBears
ConsidertheringZ /N Z, where

Z = 0100101011
_ 120 1560
N = 23 — 21550 _ 9. 1100011011

Express elements of N in binary, 10 digits at a time. Horonon

Say that an element tis “short” if it can be expressed
as

= Zk Ck 210 k
where 2, |c, | is not very large.

By construction, if s and t are short, then (st) is short.




ThreeBears Key Exchange

In Three Bears, M is a small (up to 4x4) matrix with entries from

Z/NZ.()
Alice and Bob use random “short” vectors instead of Gaussian

vectors to disquise their operations.

(*): With a modified multiplication operation.




ThreeBears Key Exchange

They end up with approximations to b'Ma that differ only by

"short” elements. That allows them to derive a large number of
shared secret bits.

The author mentions that his design is based on KYBER.




Choices & Differences



I-MLWE instead of RLWE or MLWE

"We expected [I-LWE] to be strictly worse than polynomial MLWE, and thus not
worthy of a NIST submission. But in fact, -MLWE gives a range of desirable
parameter sets which are comparable to polynomial MLWE in efficiency, ease of
implementation, and estimated security.”

(Security proof depends on the hardness of I-MLWE — which may be reducible to

hardness of MLWE?)
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The Modulus

Why N = 23120 21560 _1? Apparently because:
- It's a sum/difference of a few powers of 2.

- It's prime.

- It's big enough to encode a 256-bit key.




The Multiplication Operation

Instead of std. multiplicationin Z /N Z, the authors use:
X * y = xy(2%5%°-1) mod N.
(The rationale is that if x and y are short, this keeps x*y shorter.)




The Noise Distribution

The individual “digits” of the short
noise vectors are chosen as

shown. This achieves a particular
distribution (not obviously
Gaussian) with target variance 2.

Function noise(seed, i) is

input : Purpose p; seed whose length depends on purpose; index
i 171, ivisible by —L-
in [0..5] and divisible by 35
. 9 . in [5..1] and divisible by 35
require: o“ must be either ¢ | 3 . 1
in [1..5] and divisible by £
2 Y 8

exactly 2

output : Noise sample modulo N

B «+ Hy(seed || [i], D):
for j=0to D —1do
// Convert each byte to a digit with var o?
sample < Bj:
digit; < 0;
for k=0to [2-0%] —1do
v 64 -min(1, 202 — k);

I O sample+v sample—v |,
digit; « digit; + { 256 J + [ 226 J

sample <— sample - 4 mod 256;

end

end
D-1 ‘
return Z‘b digit; - 27 mod N
J:

end




Error-Correcting Code

The basic approach to key exchange is this: Bob generates secret random
bits s, s, ... s, adds them one at a time to the most significant bits of
various 10-digit blocks from his estimate for 6"Ma, and then transmits the
result.

However, before doing this he applies the "Melas” encoding scheme to s.




Error-Correcting Code

The Melas encoding scheme adds 18 bits and corrects up to 2 errors.

This addresses failures that can occur from the accumulation of noise.

*Our Melas implementation has small code and memory requirements, runs in constant time, and is so
fast that its runtime is almost negligible. Its downsides are increased complexity, and a correspondingly
wider attack surface for side-channel and fault attacks.”




Performance




System

CPA-secure
KeyGen Enc

Speed (in cycles)

Dec

CCA-secure
KeyGen Enc

Dec

Skylake (high speed)

BABYBEAR
MAMABEAR
PAPABEAR

41k 62k
84k 103k
124k 153k

28k
34k
40k

41k 60k
79k 96k
118k 145k

101k
156k
211k

Cortex-Ab3

Cortex-AS

BABYBEAR
MAMABEAR
PArPABEAR

153k
302k
500k

211k
377k
594k

80k

111k
141k

154k
297k
492k

210k
369k
582k

351k
566k
840k

BABYBEAR
MAMABEAR
PArPABEAR

344k
729k
1234k

501k 176k
943k 260k
1511k 319k

345k
720k
1225k

495k
931k
1502k

810k
1379k
2134k

Cortex-M4 (high speed)

BABYBEAR
MAMABEAR
PAPABEAR

644k 841k 273k
1266k 1521k 381k
2095k 2409k 488k

644k
1257k
2082k

824k
1494k
2378k

1299k
2174k
3272k

Cortex-M4 (low memory)

BABYBEAR
MAMABEAR
PArPABEAR

744k 1039k 273k
1564k 1967k 381k
2691k 3201k 488k

744k
1548k
2663k

1022k
1929k
3150k

1495k
2609k
4044k




System

Space

Private key Public key Capsule

BABYBEAR
MAMABEAR
PAPABEAR

40 804 917
40 1194 1307
40 1584 1697

Table 10: "

'HREEBEARS object sizes in bytes

They also give numbers for code size.




Memory

CPA-secure CCA-secure
System Keygen Enc  Dec | Keygen Enc Dec

Skylake (high speed)

BABYBEAR 6216 6632 4232 6216 6632 8184
MAMABEAR 9112 9528 4632 9112 9560 11512
PAPABEAR 12856 13272 5048 12856 13304 15672
Skylake (low memory)

All instances 2392 2424 2168 2392 2424 3080
Cortex-M4 (high speed)

BABYBEAR 2760 2832 2080 2760 2832 4944
MAMABEAR 3256 3312 2080 3256 3320 5904
PAPABEAR 3736 3800 2080 3736 3800 6864

Cortex-M4 (low memory)
All instances 2288 2352 2080 2288 2352 3024

Table 12: THREEBEARS memory usage bytes, excluding input and output.

https://eprint.iacr.org/2019/844.pdf numerically compares ThreeBears & other
candidates in a resource-limited environment.



https://eprint.iacr.org/2019/844.pdf

Failure Probability

Lattice security
System cca o2 Failure | Classical Quantum Class
1 ~ 2798 168 153 11

9/16 | < 27196 154 140 11

0
1

0 7/8 | ~27°1 262 238 \Y%
1

0

1

BABYBEAR

MAMABEAR
18/82 | < 2748 235 213 IV

3/4 | ~ 2752 351 318 \Y%
5/16 | < 27256 314 280 \%

PAPABEAR

Table 2: THREEBEARS recommended parameters. Security levels are given
as the logs of the estimated work to break the system using a lattice or

chosen-ciphertext attack on a quantum computer.
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