


Learning With Errors (LWE) encryption
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FrodoKEM
LAC
NewHope
NTRU
NTRU Prime
Round5
SABER
Three Bears

ThreeBears is a key 
encapsulation scheme based 
on Integer Module-LWE.





Generic LWE Key Exchange
Alice chooses large n, and a Gaussian noise vector a in (Z/nZ)r.
Alice publicizes a uniformly random rxr matrix M, and sends 
A:= (Ma + Gaussian noise) to Bob.
(The LWE assumption implies that it’s hard to recover a from A.)

a, M A (      Ma), M



Generic LWE Key Exchange
Bob chooses a Gaussian noise vector b and publicizes
B := MTb + Gaussian noise.

Alice and Bob can now both approximately compute bTMa.  This 
info can be used to share a small # of secret bits.

a, M
B (      MTb) 

A (      Ma), M, b



Generic LWE Key Exchange
How can this be optimized?
- Use matrices (possibly w/ algebraic structure) in place of a, b.
- Use a huge modulus.

a, M
B (      MTb) 

A (      Ma), M, b



Arithmetic in ThreeBears
Consider the ring Z / N Z, where

N = 23120 – 21560 – 1.
Express elements of N in binary, 10 digits at a time.

Say that an element t is “short” if it can be expressed 
as

t = Sk ck 210 k

where Sk |ck | is not very large.

By construction, if s and t are short, then (st) is short.

z      =      0100101011
1100011011
1011101101
…



ThreeBears Key Exchange
In Three Bears, M is a small (up to 4x4) matrix with entries from
Z / N Z.(*)

Alice and Bob use random “short” vectors instead of Gaussian 
vectors to disguise their operations.

a, M
B (      MTb) 

A (      Ma), M, b

(*): With a modified multiplication operation.



ThreeBears Key Exchange
They end up with approximations to bTMa that differ only by 
“short” elements.  That allows them to derive a large number of 
shared secret bits.
The author mentions that his design is based on KYBER.
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I-MLWE instead of RLWE or MLWE

a, M
B (      MTb) 

A (      Ma), M, b

“We expected [I-LWE] to be strictly worse than polynomial MLWE, and thus not 
worthy of a NIST submission. But in fact, I-MLWE gives a range of desirable 
parameter sets which are comparable to polynomial MLWE in efficiency, ease of 
implementation, and estimated security.”
(Security proof depends on the hardness of I-MLWE – which may be reducible to 
hardness of MLWE?)



The Modulus
Why N = 23120 – 21560 – 1?  Apparently because:

- It’s a sum/difference of a few powers of 2.
- It’s prime.
- It’s big enough to encode a 256-bit key.

a, M
B (      MTb) 

A (      Ma), M, b



The Multiplication Operation
Instead of std. multiplication in Z / N Z, the authors use:

x * y = xy(21560-1)  mod N.
(The rationale is that if x and y are short, this keeps x*y shorter.)

a, M
B (      MTb) 

A (      Ma), M, b



The Noise Distribution

The individual “digits” of the short 
noise vectors are chosen as 
shown.  This achieves a particular 
distribution (not obviously 
Gaussian) with target variance s2.  



Error-Correcting Code
The basic approach to key exchange is this: Bob generates secret random 
bits s1 s2 … sk, adds them one at a time to the most significant bits of 
various 10-digit blocks from his estimate for bTMa, and then transmits the 
result.
However, before doing this he applies the “Melas” encoding scheme to s.

a, M
B (      MTb) 

A (      Ma), M, b



Error-Correcting Code
The Melas encoding scheme adds 18 bits and corrects up to 2 errors.
This addresses failures that can occur from the accumulation of noise.

“Our Melas implementation has small code and memory requirements, runs in constant time, and is so 
fast that its runtime is almost negligible. Its downsides are increased complexity, and a correspondingly 
wider attack surface for side-channel and fault attacks.”

a, M
B (      MTb) 

A (      Ma), M, b





Speed (in cycles)



Space

They also give numbers for code size.



Memory

https://eprint.iacr.org/2019/844.pdf numerically compares ThreeBears & other 
candidates in a resource-limited environment.

https://eprint.iacr.org/2019/844.pdf


Failure Probability




