

NIST Postquantum Cryptography Project Carl Miller April 3, 2018

The Basics

- It's a public key encryption (and key encapsulation) scheme.
- HQC = "Hamming Quasi-Cyclic." The scheme is based on the hardness of decoding quasi-cyclic codes. It's proved to be IND-CPA.

Quasi-Cyclic codes

Translation-invariant codes

A linear code $V \subseteq \mathbf{F}_2^n$ is **cyclic** if it is stabilized by the translation operator $T: (v_1, \ldots, v_n) \mapsto (v_2, \ldots, v_n, v_1).$

Translation-invariant codes

Equivalently,

A cyclic linear code in \mathbf{F}_2^n is an ideal of the ring $\mathbf{F}_2[X]/(X^N-1)$.

of

Translation-invariant codes

The following case (s = 2) is important.

Let $\mathcal{R} := \mathbf{F}_2[X]/(X^N - 1), h \in \mathcal{R}$. Then, let \mathcal{C} be the kernel of the map $\mathcal{R}^2 \to \mathcal{R}$ given by

 $(x,y) \mapsto x + hy.$

The 2-DQCSD Problem

DQCSD = Decision Quasi-Cyclic code Syndrome Decoding

Fix $w \leq n$. Suppose that a random oracle chooses:

• random $h \in \mathcal{R}$,

• random $x, y \in \mathcal{R}$ each having w monomial terms,

and outputs (h, x + yh).

The PKE Protocol

k = message length, n = output length parameter. Alice fixes a (known) efficiently decodable [n,k] code with generator matrix **G**. (G is the BCH code tensored with the repetition code?) Alice chooses a random degree <= n polynomial **h** (i.e., a random QC code of index 2).

Encrypted message will be encoded with <u>both</u> **G** and **h**, but to Alice it will appear to have only been encoded with G.

- Alice chooses two low-Hamming weight polynomials x,y of degree n.
- 2. Alice sends **s** := **x** + **hy** to Bob. (Public key.)

(All arithmetic is mod 2 and mod ($X^n - 1$).)

3. Let **m** = Bob's message (k bits). Bob computes m**G**.

4. Bob computes low-Hamming weight **e**, **r**₁, **r**₂, and sends

 $\mathbf{v} := \mathbf{r_1} + \mathbf{hr_2}$ and $\mathbf{v} := \mathbf{mG} + \mathbf{sr_2} + \mathbf{e}$ to Alice.

5. Alice computes v – uy, which is (mG + noise).
6. She decodes m.

Critical observation: What remains after step 5 is

(mG) + e'

where

 $e' = [x r_1 + r_2 y + e].$

All of terms on the right are low Hamming weight, so **e'** is low Hamming weight.

Security Proof (Sketch)

IND-CPA Guessing Game

Suppose that the adversary has an algorithm that successfully guess i.

The user changes the game by instead choosing various data (**s**, **r**, **r**, **e**) completely at random.

By hardness assumption, the adversary can't tell the difference.

IND-CPA Guessing Game

Lastly, the user changes her choice of i. Now (because of random choices) the adversary can't tell that this change was made. Contradiction.

Based on hardness of 2-DQCSD and 3-DQCSD.

Numerics

Parameters			Encryption size parameter									
			Message size									
			Hamming weight parameters									
	Instance	n_1	n_2	n	k	δ	w	$w_{\mathbf{r}}$	$w_{\mathbf{e}}$	security	p_{fail} -	Decryption
	Basic-I	766	29	22,229	256	57	67	77	77	128	$< 2^{-64}$	Failure probability
	Basic-II	766	31	23,747	256	57	67	77	77	128	$< 2^{-96}$	p
	Basic-III	796	31	24,677	256	57	67	77	77	128	$< 2^{-128}$	
	Advanced-I	796	51	40,597	256	60	101	117	117	192	$< 2^{-64}$	
	Advanced-II	766	57	43,669	256	57	101	117	117	192	$< 2^{-128}$	
	Advanced-III	766	61	46,747	256	57	101	117	117	192	$< 2^{-192}$	
	Paranoiac-I	766	77	59,011	256	57	133	153	153	256	$< 2^{-64}$	
	Paranoiac-II	766	83	63,587	256	57	133	153	153	256	$< 2^{-128}$	
	Paranoiac-III	796	85	67,699	256	60	133	153	153	256	$< 2^{-192}$	
	Paranoiac-IV	796	89	70,853	256	60	133	153	153	256	$< 2^{-256}$	

Performance

Instance	KeyGen	Encrypt	Decrypt
Basic-I	1.12	1.59	0.71
Basic-II	1.21	1.74	0.77
Basic-III	1.26	1.79	0.79
Advanced-I	2.43	4.14	1.59
Advanced-II	2.58	4.49	1.69
Advanced-III	2.82	4.94	1.83
Paranoiac-I	4.24	7.87	3.02
Paranoiac-II	4.52	8.39	3.22
Paranoiac-III	4.76	8.87	3.40
Paranoiac-IV	5.07	9.42	3.61

Table 2: Timings (in ms) of the reference implementation for different instances of HQC.

Advantages & Limitations

- Reduction to well-studied problem (syndrome decoding).
- Simple protocol.
- Encrypted messages are long.

NIST Postquantum Cryptography Project Carl Miller April 3, 2018