

Round 2 of the NIST PQC "Competition"

What was NIST thinking?

National Institute of Standards and Technology U.S. Department of Commerce

Dustin Moody

NIST Crypto Standards

- Areas:
 - Block ciphers, hash functions, message authentication codes (MACs), digital signatures, key-establishment, post-quantum (signatures + key establishment), random bit generation, etc...
- FIPS, SP's, and NISTIRs
- NISTIR 7977 NIST's process for developing crypto standards
 - Cooperation with other SDO's
- Principles:
 - Transparency, openness, balance, integrity, technical merit, global acceptability, usability, continuous improvement, innovation and intellectual property
- Stakeholders:
 - Primarily the US federal government, broader industry and public/private organizations

NIST Competitions*

- Block Cipher
 - AES 15 candidates, 2 rounds, 5 finalists, 3 years + 1 year for standard
- Hash Function
 - SHA-3 64 submissions, 51 accepted, 3 rounds, 14 2nd round candidates, 5 finalists, 5 years + 3 years for standard
- Post-Quantum Cryptography
 - No Name? 82 submissions, 69 accepted, 2 (or 3) rounds, 26 2nd round candidates, 2017-2020ish + 2? Years for standard
- Lightweight Crypto
 - 57 submissions, 2019-2022ish

The NIST PQC Project

- 2009 NIST publishes a PQC survey
 - Quantum Resistant Public Key Cryptography: A Survey
 [R. Perlner, D. Cooper]
- 2012 NIST begins PQC project
 - Research and build team
 - Work with other standards organizations (ETSI, IETF, ISO/IEC SC 27)
- April 2015 1st NIST PQC Workshop

A competition by any other name

- Feb 2016 NIST Report on PQC (<u>NISTIR 8105</u>)
- Feb 2016 NIST announcement at PQCrypto in Japan
- Dec 2016 Final requirements and evaluation criteria published
- Nov 2017 Deadline for submissions
- Scope:
 - Digital Signatures (FIPS 186)
 - Public-key encryption/KEMs (SP 800-56A and SP 800-56B)
- Expected outcome: a few different algorithms

Targeted Functionalities/ Security Definitions

- Digital Signature
 - EUF-CMA up to 2⁶⁴ signature queries
- PKE/KEM (first option)
 - IND-CCA up to 2⁶⁴ decryption/decapsulation queries
 - Necessary in situations requiring key reuse
- PKE/KEM (second option)
 - IND-CPA
 - Needs usage restrictions to prevent key reuse
 - May be worth standardizing in addition to IND-CCA schemes if it comes with significant performance benefits

Evaluation Criteria

Security – against both classical and quantum attacks

Level	Security Description
I.	At least as hard to break as AES128 (exhaustive key search)
П	At least as hard to break as SHA256 (collision search)
Ш	At least as hard to break as AES192 (exhaustive key search)
IV	At least as hard to break as SHA384 (collision search)
V	At least as hard to break as AES256 (exhaustive key search)

• NIST asked submitters to focus on levels 1,2, and 3. (Levels 4 and 5 are for very high security)

• Performance – measured on various classical platforms

• Other properties:

• Drop-in replacements, Perfect forward secrecy, Resistance to side-channel attacks, Simplicity and flexibility, Misuse resistance, etc...

The 1st Round Candidates

- 82 submissions received.
- <u>69 accepted</u> as "complete and proper" (5 withdrew)

	Signatures	KEM/Encryption	Overall
Lattice-based	5	21	26
Code-based	2	17	19
Multi-variate	7	2	9
Symmetric-based	3		3
Other	2	5	7
Total	19	45	64

- BIG QUAKE
- BIKE
- CFPKM
- Classic McEliece
- Compact LWE
- CRYSTALS-DILITHIUM
- CRYSTALS-KYBER
- DAGS
- Ding Key Exchange
- DME
- DRS
- DualModeMS
- Edon-K
- EMBLEM/R.EMBLEM
- FALCON
- FrodoKEM
- GeMSS
- Giophantus

- Gravity-SPHINCS
- Guess Again
- Gui
- HILA5
- HiMQ-3
- M HK-17
 - HQC
 - KCL
 - KINDI
 - LAC
 - LAKE
 - LEDAkem
 - LEDApkc
 - Lepton
 - LIMA
 - Lizard
 - LOCKER
 - LOTUS

- LUOV
- McNie
- Mersenne-756839
- MQDSS
- NewHope
- NTRUEncrypt
- NTRU-HRSS-KEM
- NTRU Prime
- NTS-KEM
- Odd Manhattan
- Ouroboros-R
- Picnic
- Post-quantum RSA
 Encryption
- Post-quantum RSA Signature
- pqNTRUSign
- pqsigRM

- QC-MDPC-KEM
- qTESLA
- RaCoSS
- Rainbow
- Ramstake
- RankSign
- RLCE-KEM
- Round2
- RQC
- RVB
- SABER
- SIKE
- SPHINCS+
- SRTPI
- Three Bears
- Titanium
- WalnutDSA

Overview of the 1st Round

- Began Dec 2017 1st Round Candidates published
- Resources:
 - Internal and external cryptanalysis
 - The 1st NIST PQC Standardization Workshop
 - Research publications
 - Performance benchmarks
 - Official comments
 - The pqc-forum mailing list
- Ended Jan 30, 2019 2nd Round Candidates Announced

Breaks and attacks

- Dec 21 Submissions publicly posted
- 3 weeks later 12 schemes broken or significantly attacked
- 5 withdrawals
 - Edon-K, HK17, RankSign, RVB, SRTPI
- April 2018 4 more schemes broken/attacked
- NIST lacked full confidence in security of:
 - CFPKM, Compact-LWE, DAGS, DME, DRS, GuessAgain, Giophantus, Lepton, McNie, pqsigRM, RaCoSS, RLCE, Walnut-DSA

Performance considerations

- "Performance considerations will NOT play a major role in the early portion of the evaluation process."
- PQRSA and DualModeMS were too inefficient
- Evaluation resources
 - NIST's internal numbers
 - Preliminary benchmarks SUPERCOP, OpenQuantumSafe, etc...
 - We hope to get more benchmarks for Round 2

The PQC-forum

- Sign up at <u>www.nist.gov/pqcrypto</u>
- Official channel for announcements and discussion of NIST PQC
- 1300 members
- 1002 posts

Official Comments

- Can be submitted on pqc-forum or our website
- Way to keep track of comments on particular submission
- Round 1 Over 300 official comments
 - 60% of comments on about 10 submissions
 - About half of submissions had 2 or fewer comments
- Round 2 official comments "start over"
 - So far, 7 submissions have a total of 48 comments

The 1st NIST PQC Standardization Conference

- April 11-13, 2018 in Ft. Lauderdale, Florida co-located with PQCrypto 2018
- There were 52 presentations, covering 60 algorithms, with 345 attendees
 - Most presentations were only 15 minutes
 - Slides available at https://csrc.nist.gov/events/2018/first-pqc-standardization-conference

Intellectual Property

- Signed statements required from submitters (posted on our webpage)
- From the CFP:

"NIST does not object in principle to algorithms or implementations which may require the use of a patent claim, where technical reasons justify this approach, but will consider any factors which could hinder adoption in the evaluation process."

- For Round 1 schemes evaluated on their technical merits
 - Later on in process, IP concerns may play a larger role
- For Round 2 only need new IP statements if new team members, or if IP status has changed.

NIST's Process

- Dec 2017 Check submissions for completeness
- Jan to Sep 2018 Detailed internal presentations on submissions
- Apr 2018 1st Workshop submitter's presentations
- Sep to Nov 2018 Review and make preliminary decisions
 - Compare similar type schemes to each other
- Dec 2018 Final decision and start report (NISTIR 8240)
 - Very hard decisions
 - Report focused on candidates that advanced on

Apples and Oranges

Encryption/KEMs					Signatures		
Crystals-Kyber	Lattice MLWE	Big Quake	Codes	Goppa	CRYSTALS-Dilithium	Lattice	Fiat-Shamir
KINDI	Lattice MLWE	Classic McEliece	Codes	Goppa	qTesla	Lattice	Fiat-Shamir
Saber	Lattice MLWR	NTS-KEM	Codes	Goppa	Falcon	Lattice	Hash then sign
FrodoKEM	Lattice LWE	BIKE	Codes	short Hamming	pqNTRUSign	Lattice	Hash then sign
Lotus	Lattice LWE	HQC	Codes	short Hamming			
Lizard	Lattice LWE/RLWE	LEDAkem	Codes	short Hamming	Gravity-SPHINCS	Symm	Hash
Emblem/R.emblem	Lattice LWE/RLWE	LEDApkc	Codes	short Hamming	SPHINCS+	Symm	Hash
KCL	Lattice LWE/RLWE/LWR	QC-MDPC KEM	Codes	short Hamming	Picnic	Symm	ZKP
Round 2	Lattice LWR/RLWR	LAKE	Codes	low rank			
Hila5	Lattice RLWE	LOCKER	Codes	low rank	GeMMS	MultVar	HFE
Ding's key exchange	Lattice RLWE	Ouroboros-R	Codes	low rank	Gui	MultVar	HFE
LAC	Lattice RLWE	RQC	Codes	low rank	HIMQ-3	MultVar	UOV
Lima	Lattice RLWE				LUOV	MultVar	UOV
NewHope	Lattice RLWE				Rainbow	MultVar	UOV
Three Bears	Lattice IMLWE	SIKE	Isogeny	Isogeny	MQDSS	MultVar	Fiat-Shamir
Mersenne-756839	Lattice ILWE						
Titanium	Lattice MP-LWE						
Ramstake	Lattice LWE like						
Odd Manhattan	Lattice Generic						
NTRU Encrypt	Lattice NTRU						
NTRU-HRSS-KEM	Lattice NTRU						
NTRUprime	Lattice NTRU						

Mergers

- NIST encouraged mergers of similar submissions
 - Round5 = Round2 + Hila5
 - Rollo = Lake + Locker + Ouroboros-R
 - NTRU = NTRUEncrypt + NTRU-HRSS-KEM
 - LEDAcrypt = LEDAkem + LEDApkc
- NIST is still open to future mergers

Biting the Bullet (1)

• NIST wanted to keep diversity, but reduce numbers

Big Quake	Codes	Goppa
Classic McEliece	Codes	Goppa
NTS-KEM	Codes	Goppa
BIKE	Codes	short Hamming
HQC	Codes	short Hamming
LEDAkem	Codes	short Hamming
LEDApkc	Codes	short Hamming
QC-MDPC KEM	Codes	short Hamming
LAKE	Codes	low rank
LOCKER	Codes	low rank
Ouroboros-R	Codes	low rank
RQC	Codes	low rank
SIKE	Isogeny	Isogeny

Biting the Bullet (2)

• NIST wanted to keep diversity, but reduce numbers

Crystals-Kyber	Lattice	MLWE
KINDI	Lattice	MLWE
Saber	Lattice	MLWR
FrodoKEM	Lattice	LWE
Lotus	Lattice	LWE
Lizard	Lattice	LWE/RLWE
Emblem/R.emblem	Lattice	LWE/RLWE
KCL	Lattice	LWE/RLWE/LWR
Round 2	Lattice	LWR/RLWR
Hila5	Lattice	RLWE
Ding's key exchange	Lattice	RLWE
LAC	Lattice	RLWE
Lima	Lattice	RLWE
NewHope	Lattice	RLWE
Three Bears	Lattice	IMLWE
Mersenne-756839	Lattice	ILWE
Titanium	Lattice	MP-LWE
Ramstake	Lattice	LWE like
Odd Manhattan	Lattice	Generic
NTRU Encrypt	Lattice	NTRU
NTRU-HRSS-KEM	Lattice	NTRU
NTRUprime	Lattice	NTRU

Crystals-Kyber	Lattice MLWE
Saber	Lattice MLWR
FrodoKEM	Lattice LWE
Round 5	Lattice LWR/RLWR
LAC	Lattice RLWE
NewHope	Lattice RLWE
Three Bears	Lattice IMLWE
NTRU	Lattice NTRU
NTRUprime	Lattice NTRU

Biting the Bullet (3)

• NIST wanted to keep diversity, but reduce numbers

Signatures		
CRYSTALS-Dilithium	Lattice	Fiat-Shamir
qTesla	Lattice	Fiat-Shamir
Falcon	Lattice	Hash then sign
pqNTRUSign	Lattice	Hash then sign
Gravity-SPHINCS	Symm	Hash
SPHINCS+	Symm	Hash
Picnic	Symm	ZKP
GeMMS	MultVar	HFE
Gui	MultVar	HFE
HIMQ-3	MultVar	UOV
LUOV	MultVar	UOV
Rainbow	MultVar	UOV
MQDSS	MultVar	Fiat-Shamir

Signatures			
CRYSTALS-Dilithium	Lattice	Fiat-Shamir	
qTesla	Lattice	Fiat-Shamir	
Falcon	Lattice	Hash then sign	
SPHINCS+	Symm	Hash	
Picnic	Symm	ZKP	
GeMMS	MultVar	HFE	
LUOV	MultVar	UOV	
Rainbow	MultVar	UOV	
MQDSS	MultVar	Fiat-Shamir	
		1	

A brief intermission

- Dec 4 pqc-forum post saying we are close to end of 1st round
- Dec 13 NIST decided to announce 2nd Round candidates at RWC
- Dec 22 US government shutdown begins
 - NIST employees cannot work in any way, shape or form
- Jan 9-11 Real World Crypto in San Jose, CA
 - NIST did not attend and announce as planned
- Jan 28 NIST is back at work!
- Jan 30 2nd Round Announcement
 - 1st Round Report, NISTIR 8240 (<u>https://doi.org/10.6028/NIST.IR.8240</u>)

Numbers

- For Round 2, there are a total of 157 submitters
 - Distribution: [114,22,10,10,0,0,1]
- 17 Countries
- 13 States
- 4 Continents

Tweaks

- Submission teams had until March 15 to send us their revised/merged submission
 - No major re-designs, must meet all the same acceptance criteria
 - NIST to decide whether tweaks are acceptable (working with the submitters)
- Many teams asked for more time, so 2 week extension granted
- Mostly parameter updates, better implementations, compression

- KEMs/Encryption: Lattices
 - Crystals-Kyber
 - Based on Module LWE over power-of-2 cyclotomic ring. Easy to scale. Good performance. Security proof might not cover actual scheme.
 - Tweaks: Updated parameters (decreased q), removed compression, "90s" version
 - FrodoKEM
 - Uses algebraically unstructured lattices, relies on standard LWE. Results in larger key sizes, and slightly slower performance than other (ring-based) lattice schemes.
 - Tweaks: Added level 5 parameter set, updated parameters, simplified transform
 - LAC
 - Based on poly-variant of LWE. Uses modulus *q*=251. Good performance. Category 5 parameters have problems. Needs constant-time implementation.
 - Tweaks: Updated parameters, changed distribution, added error-correcting code, made constanttime
 - NewHope
 - Based on ring LWE, with power-of-2 cyclotomic ring. Good performance.
 - Tweaks: Added Lima team, very minor corrections

- KEMs/Encryption: Lattices
 - NTRU
 - Merger of 2 good submissions. Been around longer than other submissions. Based on "NTRU assumption". NTRU lattices have more structure than other lattice schemes.
 - Tweaks: New transform, some parameter sets from both teams in common framework
 - NTRU Prime
 - 2 versions (streamlined and LPRime). Uses irreducible, non-cyclotomic polynomials and inert prime *q*. Good performance. Different cost model used than other submissions. Only level 5 parameters.
 - Tweaks: Added more parameter sets, implicit rejection, expanded discussion in spec
 - Round 5
 - Merger, mostly based on Round2. Uses prime cyclotomic rings, based on (ring) LWR. Good performance and low bandwidth. Previous issue with decryption failure.
 - Tweaks: Uses ECC from Hila5, updated parameters and implementation
 - Saber
 - Based on module LWR, and power-of-2 cyclotomic ring. Good performance and low bandwidth. Parameters may not fit known security reductions.
 - Tweaks: Slight changes for efficiency and security reductions, cleaner spec
 - Three Bears
 - Novel design (variant of module LWE over the integers). Fast arithmetic. Newer security assumption.
 - Tweaks: Updated parameters, new security proof, added failure analysis (lower failure rate)

- KEMs/Encryption: Code-based
 - Classic McEliece
 - Based on established McEliece cryptosystem (binary Goppa codes). Lots of analysis of security problem. No decryption failures. Short ciphertexts. Okay performance. Very large public keys. Only level 5 parameters given.
 - Tweaks: More parameter sets/security levels, future proposal with 2x faster keygen algorithm
 - NTS-KEM
 - Very, very similar to Classic McEliece, but with some different design choices. Needs constant time implementation.
 - Tweaks: Uses implicit rejection
 - BIKE
 - 3 versions. Based on quasi-cyclic MDPC codes. Ephemeral use only. Similar key size and performance to lattice schemes. More analysis needed of particular security assumption.
 - Tweaks: New decoder yielding smaller error rates, new CCA version
 - HQC
 - Low decryption failure rate (necessary for CCA security). As a result, slightly larger key and ciphertext sizes. More analysis needed of particular security assumption.
 - Tweaks: dropped some parameter sets, updated implementation

- KEMs/Encryption: Code-based (and Isogeny)
 - LEDAcrypt
 - Merger. Based on quasi-cyclic LDPC codes, which have more structure than QC-MDPC codes. New parameters with low decryption rates. Needs more analysis.
 - Tweaks: Updated parameters, CCA version, better failure rates, new transform
 - Rollo
 - Merger of 3 rank-based schemes using LRPC codes. 2 schemes are ephemeral, 1 targets CCA security. Newer security assumption.
 - Tweaks: Uses ideal codes instead of quasi-cyclic ones (Rollo-3), updated parameters
 - RQC
 - Rank-based scheme. No decryption failures. As a result, slower speeds and ciphertext size. Security problem needs more analysis, as it is newer.
 - Tweaks: Uses ideal codes (not quasi-cyclic), updated parameters, updated implementation
 - SIKE
 - Uses isogenies of supersingular elliptic curves. Very low key sizes. Can leverage ECC knowledge and code. Security problem is relatively new. Performance a concern.
 - Tweaks: New parameter sets, new quantum security analysis, optional key compression

Public Key vs Ciphertexts, Category 1

• Signatures: Lattices

- Crystals-Dilithium
 - Fiat-Shamir idea, based on module LWE. Good performance.
 - Tweaks: randomized signing option, some optimizations
- Falcon
 - Uses the NTRU lattice. Good performance. Complicated to implement.
 - Tweaks: removed parameter set, key-recovery mode
- qTesla
 - Based on ring LWE. Good performance. More analysis needed of particular security assumption.
 - Tweaks: updated parameters, randomized signatures, optional compressed version

Symmetric-based

- Sphincs+
 - Stateless hash-based scheme. Security well understood, relying only on pre-image resistance of the hash function. Small public keys, but large signatures. Signing is slower.
 - Tweaks: use tweakable hash, some optimizations
- Picnic
 - Novel design, based on hash functions, block ciphers, and zero-knowledge proofs. Small public keys, but larger signatures. Slower performance. Very modular scheme. Needs more analysis.
 - Tweaks: Updated parameter sets, different MPC system, protection from multi-target attacks

- Signatures: Multivariate
 - GeMSS
 - An HFEv- "big-field" scheme. Very small signatures. As a result, some performance sizes/times are larger. Better tradeoffs may be found.
 - Tweaks: Updated parameter sets, better performance, updated implementation
 - LUOV
 - "Small-field" scheme based on UOV. Low bandwidth. Some of the techniques introduced need more analysis.
 - Tweaks: Updated parameters (smaller security margin), more side-channel protection
 - MQDSS
 - Based on provably secure reduction to MQ problem, using Fiat-Shamir. (Actual parameters don't fit the reduction). Smaller public keys, and larger signature sizes. Needs more research and optimization.
 - Tweaks: Updated parameters, updated security analysis
 - Rainbow
 - Generalization of UOV, adding in structure to be more efficient. Somewhat well-studied. The implementation could be improved.
 - Tweaks: Updated (and fewer) parameter sets, improved KeyGen, variant with smaller keys

Public Key By Signature (Category 1)

+ Lattice – Multivariate × Symmetric

Cryptanalysis continues....

- LAC
 - D' Anvers, Tiepelt, Vercauteren, Verbauwhede: eprint.iacr.org/2019/292
 - "It is able to retrieve LAC's secret for all security levels in under 2 hours using less than 2²¹ decryption queries..."
 - Round 2 spec counters this timing attack by using (almost) constant time BCH decoding algorithm
- qTesla
 - Optional key compressed version broken by Lyubashevsky and Schwabe

The Second Round (and beyond)

- Aug 22-24, 2019 2nd NIST PQC Standardization workshop, co-located with CRYPTO in Santa Barbara, CA
 - Deadline for paper submission: May 31, 2019
 - Registration is already open
- Expected to last 12-18 months, after possibly a 3rd Round
- Overall timeline: we still expect draft standards around 2022ish
 - (but reserve the right to change this!)

Stateful Hash-based signatures

- NIST plans to approve stateful hash-based signatures
 - 1) XMSS, specified in <u>RFC 8931</u>
 - 2) LMS, specified in <u>RFC 8554</u>
- In Feb 2019, NIST issued a <u>request for public input</u> on how to mitigate the potential misuse of stateful HBS schemes.
 - See comments received <u>here</u>
- NIST expects to have a Special Publication (SP) published in 2019

Other NIST projects

- Lightweight cryptography "competition"
 - <u>56 submissions</u> (for AEAD + optional hash function)
 - Workshop on Nov 4-6, 2019
- Threshold Cryptography
 - Workshop on March 11-12, 2019
- FIPS 186-5 (Digital Signature Standard)
 - Expected very, very soon
 - New elliptic curves, signature algorithms to be added

What NIST wants

- Performance (hardware+software) will play more of a role
 - More benchmarks
 - For hardware, NIST asks to focus on Cortex M4 (with all options) and Artix-7
 - pqc-hardware-forum
- Continued research and analysis on ALL of the 2nd round candidates

 See how submissions fit into applications/procotols. Any constraints?

Summary

- Round 2 has started
 - 26 candidate algorithms (17 encryption/KEM, 9 signatures)
- We will continue to work in an open and transparent manner with the crypto community for PQC standards
- Check out: <u>www.nist.gov/pqcrypto</u>
 - Sign up for the pqc-forum
- Talk to us: pqc-comments@nist.gov

