qTesla

Carl Miller
NIST Computer Security Division
June 1, 2018

NIST PQC Seminar (not for public distribution)

The Basics

* It's a digital signature scheme.

* Itisan LWE scheme (Learning With Errors) in the ring

Ry = Zala]/ (" + 1)

* Itinvolves a trick using a hash function (forcing the signer
to do steps in a certain order?).

Building Blocks

e

The Ring A&,

Let n be a power of two (e.g., 2048) and let g be a positive
integer (e.qg., 12,681,217). Consider the ring

Ry = Zyfal/ (" +1)

Let us say thata vectorv=v,+v, x+v,x* +...in Ry is short if
every v, has small absolute value.

Let us say that such a vector vis small if |v| <=1 for alli, and
most of the values v, are zero.

The Ring A&,

Suppose that we secretly pick a random short vector s in K,
We then publicly pick random elements a,, a,, a,, ... and
compute
sa,, Sa,, Sa,, ...
If we reveal these values to an adversary, she can easily
determiness.
But if we mask them each with random small vectors
5a,+€,, Sa,+€,, 5a+ey, ...
then determining s becomes a lot harder.

The Ring A&,

Basic hardness assumption: The distribution of
(a,sa+e)
is computationally indistinguishable from random.

Different forms of the "hard” problem

Suppose we are given a vectors u,a in R, and are asked to find a
short vector z such that

U R az
(Thatis, (u—az) is a short vector.)

This must be hard too (otherwise the problem on the previous
page could be easily solved).

Different forms of the "hard” problem

Suppose we are given a vectors u,a in R, and are asked to find a
short vector z such that

U R az
(Thatis, (u—az) is a short vector.)

Next suppose that we are given a and allowed to pick u, but it
must be of the form

u:= w—H([wly)
where H is a hash function and [], = "most significant bits.”
“Forging"” for the upcoming sig.-prot. is similar to solving this.

Protocol

Overview

The signer produces two random-looking elements a,tin R,
(except that a is invertible).

There is a fixed hash function H that maps bit-strings to
small elements of R,,.

Verifier
Public key: a,t Public key: a,t

Overview

The signer signs a message m with a signature (z,c) where z,
careinR,, zis short and cis small.
The verifier computes w := az — tc, and accepts only if

c =H ([wl, m).

Message: m
Signature: ¢,z
Verifier

Public key: a,t Public key: a,t

Overview

"Faking” a solution to the system
w=az-tc and c=H([w]y, m)

is hard (?).
But given specific knowledge about how a,t were generated

(specifically, if t = as + e, where s and e are short) it's easy.

Message: m
Signature: ¢,z
Verifier
Public key: a,t

Secret key: s,e Public key: a,t

Procedures

Algorithm 1 Informal description of the key generation

Require: -
Ensure: Secret key sk = (s, e,a), public key pk = (a,t)

: a < R, invertible ring element : : : :

: Choose s,e € R with entries from D,,. <+ GaUSSIan dlStrIbUtlon
. If the h largest entries of e sum to Lg then sample new e and retry at step 2.

. If the h largest entries of s sum to Lg then sample new s and retry at step 2.
:t=as+e€ Ry

. Return secr@& key sk = (s, e) and public key pk = (a,t).

Definition of t.

Procedures

Algorithm 2 Informal description of the signature generation

Require: Message m, secret key sk = (s, e, a),
Ensure: Signature (z,c).

: Choose y uniformly at random among B-short polynomials in R,.
: ¢ H(lay]p ,m).

: 2 < Y+ Sc.

. If z is not ™ — Lg)-short then retry at step 1.

A solution is constructed to the system from 2 slides ago.
If y, s are short and e is small, then y+sc is short, as desired.

Procedures

Algorithm 2 Informal description of the signature generation

Require: Message m, secret key sk = (s, e, a),
Ensure: Signature (z,c).

: Choose y uniformly at random among B-short polynomials in R,.
: ¢ H(lay]p ,m).

: 2 < Y+ Ssc.

. If z is not (B — Lg)}Short then retry at step 1.

. If ay — ec is not yell-rounded then retry at step 1.

: Return signatugf (z, ¢).

Randomness is needed here. In the full protocol, this
randomness is drawn by hashing the message itself.

Performance

Security claims

The authors claim that their protocol is provably secure in the Quantum

Random Oracle Model (QROM). This is established mostly by referring to
other papers.

E. Alkim, et al. “"Revisiting TESLA in the quantum random oracle

model.” (2017)

The protocol is in a sense a Fiat-Shamir transformation of a certain
identification scheme (?). This is another way to approach security (?).

https://eprint.iacr.org/2015/755.pdf

Security claims

The security proofs are based on a few assumptions, including the
hardness of their version of Ring-LWE.

(Question: What hardness assumptions are made about the hash function?)

Numerical claims about security are based on the "LWE-Estimator”
software.

Authors’ Response to Comment

A mistake was found by V. Lyubashevsky (thanks!)
m Security reduction still holds
m Bit security estimates unchanged
m But “provable-security” property is lost for those parameters

Speed

total
(sign + verify)
qTESLA-128 3402 2495 520 3015
qTESLA-192 5875 9686 1065 10751
qTESLA-256 12433 26 063 1310 38 496

Scheme keygen sign | verify

Table 3: Performance (in thousands of cycles) of qTESLA on a 2.40 GHz Intel Core i5-
6300U (Skylake) processor. Cycle counts are rounded to the nearest 103 cycles.

(These schemes address security levels 1, 3, and g5, respectively.)

Size
Some variables (such as “a”) are not stored as-is — a shorter bit string is
stored and then and expanded using cSHAKE.

Table 2: Different key and signature sizes of our proposed parameter sets; we abbreviate
theoretical sizes with TS and sizes as used in the implementations with IS; sizes are given
in bytes.

Parameter set TS/IS public key secret key signature
TS 2 976 1 856 2 720
Qs IS 4128 2 112 3 104
TS 6 176 4 160 5 664
IS 8 224 8 256 6 176
TS 6 432 4 128 5 920
IS 8 224 8 256 6 176

qTesla-192

gTesla-256

The authors claim to have one of the smallest signature sizes against a
quantum adversary.

qTesla

Carl Miller
NIST Computer Security Division
June 3, 2018

NIST PQC Seminar (not for public distribution)

